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Abstract—Much of the research about 5G networks deals with
emerging or upcoming applications, e.g., self-driving cars and
virtual reality. In this paper, we focus on present-day Internet
services and assess which of them can benefit the most integration
within 5G, i.e., which of today’s service providers are the most
likely to become 5G verticals. To this end, we leverage a large-
scale, real-world, crowd-sourced dataset representing the data
required by thousands of smartphone apps, and study the data
rate and sparseness associated with each app. We argue that
high-data rate, low-sparseness apps have the most to gain from
5G integration, and find that this category includes not only video
streaming, but also peer-to-peer file transfer and mobile gaming
applications.

I. INTRODUCTION AND RELATED WORK

It is a truth universally acknowledged, that emerging and
upcoming applications be the main motivation for 5G. Without
5G, services like virtual reality [1], self-driving vehicles [2],
machine-to-machine communication [3], [4] would be im-
possible or very hard to provide; without said services, 5G
networks would be uneconomical to develop and deploy [5],
[6]. New services will integrate within the network rather
than using it, i.e., they will use custom-made, virtualized
network slices [7], [8] for their communication and computa-
tion needs. The companies offering such services will become
verticals [9], [10], i.e., stakeholders rather than simple users
of 5G networks.

In this context, comparatively little attention has been de-
voted to present-day applications and their relationship with
5G. Will they use 5G networks the same way they use
LTE today, i.e., as a mere means to transfer data between
mobile users and servers? Will they embrace the 5G paradigm,
integrate within the network and become verticals in their turn?
Our goal in this paper is to provide an answer to this important
question.

To this end, we focus on one of the main innovations of 5G,
namely, the multi-access edge computing (MEC) paradigm,
providing localized support for high-bandwidth services [11],
[12]. We then consider the existing mobile applications, and
assess to which extent each can potentially benefit from having
their demand served within the 5G network, i.e., in a network
slice. Intuitively, services requiring high data rates could be
better fit for 5G than those that do not; similarly, applications
whose demand tends to be concentrated in space are more
likely to reap substantial benefits from 5G integration.

In order to characterize the demand of existing mobile
applications, we leverage a real-world, large-scale, crowd-

sourced dataset, collected by the WeFi mobile app [13].
The dataset includes information about over 120 TByte of
mobile traffic in the San Francisco Bay Area, including the
position of individual users and the apps they use. We are
therefore able to study the spacial features of data demand,
e.g., its sparseness, and to perform such analysis on a per-
app basis, thus identifying the discrepancies between different
applications.

Characterizing present-day mobile apps also helps to iden-
tify the stakeholders of 5G. Many popular present-day mobile
services are provided by over-the-top (OTT) giants like Face-
book and Netflix, and some of these companies have still to
define their attitude and strategy on 5G. It is likely that the
features of their own demand will be one of the factors OTTs
will take into account when deciding their level of integration
and involvement in 5G, and such decision will clearly have a
substantial impact on the development and deployment of 5G
networks.

The remainder of this paper is organized as follows. We
start by presenting the real-world dataset we use, in Sec. II.
Then, in Sec. III we describe and formalize the metrics we are
interested in. Finally, Sec. IV discusses the results we obtain,
and Sec. V concludes the paper and summarizes ongoing work.

II. A REAL-WORLD DATASET

The dataset we use for our analysis is a real-world, large-
scale, crowd-sourced trace coming from users of the WeFi
app [13]. The app provides up-to-date, location-specific in-
formation on the available Wi-Fi networks and their features,
e.g., throughput and security. At the same time, it collects
information about the users and their activity, so as to improve
the services offered.

The dataset comes as a collection of records, each contain-
ing the following information:

• time (date and hour) and GPS location;
• mobile operator, type of cellular connection (e.g., 3G or

LTE), and cell identifier;
• SSID and BSSID of the Wi-Fi network the user is

connected to (if any);
• application active on the user’s smartphone;
• amount of data transmitted and received.

A new record is generated every time any of the above changes
(e.g., the user moves to a new cell) or a one-hour period
elapses.
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TABLE I
THE WEFI TRACE.

Metric Value

Covered area 216× 203km2

Collection time March 2016
Number of records 641 million

Unique users 45 492
Unique cells 578 157

Unique BSSIDs 478 080
Unique apps 64 297
Total traffic 121.81 TByte
Coverage 2% (WeFi estimate)

Tab. I summarizes the main features of the WeFi dataset,
while Fig. 1 shows the area it covers, and the traffic at
the different locations therein. As one might expect, the
traffic demand is observed in the city of San Francisco, with
other high-traffic locations corresponding to urban areas, e.g.,
Sacramento in the North-East of the map. Lower-density areas,
e.g., Marin county north of San Francisco, have lower rates.

The crowd-sourced nature of the WeFi dataset is probably its
most important feature, providing it with two main advantages
over similar datasets provided by mobile operators [14], [15].
First, it can span different operators and technologies, includ-
ing Wi-Fi. Even more importantly, it can include information
on the individual apps active on users’ smartphones, a type of
data that technical and legal reasons prevent operators from
collecting. The result is a view of mobile data demand that is
both wider and deeper, instrumental in understanding not only
its global behavior but also its individual components.

III. METRICS OF INTEREST

There are three main aspects of data demand we are
interested in: the total traffic of each application, the average
data rate it requires, and how sparse1 such a demand is
in space. In the following, we detail how we capture these
aspects, either directly from the trace or through appropriate
metrics. It is important to stress that all metrics are computed
on a per-application basis, i.e., the traffic generated by different
applications is considered separately.

Total demand. It is the most straightforward metric, and
simply corresponds to the total amount of data downloaded
by each application. We use it to identify the most relevant
applications.

Peak rate. Our goal is to identify the applications that
require high peak data rates, i.e., need to download large
amounts of data in a short time at a specific location. To this
end, we:

1) divide the topology into 100× 100 m2 tiles;
2) for each (tile, day, hour) triple, we compute the amount

of data downloaded by each application;
3) for each application, we consider the 90th percentile of

said quantity.

1A sparse demand will look like a sparse population, i.e., small amounts
of demand scattered throughout a wide area.

Fig. 1. The area covered by the WeFi dataset. Colors correspond to the total
download rate, in kbit/s/km2.

Sparseness. We are interested in assessing how sparse in
space the demand for a certain app is. We therefore consider
the same division in tiles as in the peak rate metric and, for
each app, compute the total demand in each tile. We then rank
the tiles by demand (highest to lowest), and define sparseness
as the fraction of tiles that contain 50% of the total demand.
As exemplified by Fig. 2, services that are required uniformly
throughout the topology will have sparseness values close
to 0.5, while services that tend to be required around certain
locations will have lower sparseness.

IV. NUMERICAL RESULTS

First of all, we consider the distribution of the three metrics
we described in Sec. III with respect to all the applications
existing in the WeFi dataset. As depicted in Fig. 3(a) and
Fig. 3(b), the distribution of total traffic and peak rate is
almost power law-like (notice how the x-axes of both plots are
logarithmic). As one might expect, there are many applications
with low traffic and peak rate, and a few ones that consume
much more data. Moving to Fig. 3(c), it is interesting to
observe that the traffic of most applications, large and small,
is very concentrated. This confirms that the space locality

Fig. 2. How the sparseness metric works. In this example, the topology
contains 16 tiles and 16 users, all downloading the same quantity of data. If
the demand is uniform (left), we need 8 tiles to have 50% of the total demand,
and thus obtain a sparseness value of 8

16
= 0.5. In the right case, the demand

is not uniform, and the three tiles with the highest traffic contain 9
16

> 50%

of the total demand, resulting in a sparseness value of 3
16

≈ 0.19.
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Fig. 3. Comparison between apps: distribution of the total traffic (a), peak rate (b), sparseness (c).

TABLE II
HIGHEST-TRAFFIC APPLICATIONS, THEIR PEAK RATE AND SPARSENESS.

APPLICATIONS WHOSE PEAK RATE AND SPARSENESS ARE
(RESPECTIVELY) BELOW AND ABOVE THE AVERAGE ARE MARKED

(RESPECTIVELY) IN RED AND BLUE.

Application Traffic [GBit/s] Peak rate [kbit/s/km2] Sparseness

YouTube 1006.12 103.66 0.04
Facebook 497.56 69.47 0.04
Netflix 487.39 169.27 0.03
XFinity PlayNow 389.26 862.05 0.03
Chrome 219.07 36.18 0.05
Instagram 143.23 46.57 0.04
XFinity CloudTV 63.34 2.10 0.00
Google Music 58.82 1.51 0.02
Google Maps 58.26 7.16 0.05
Snapchat 49.50 51.10 0.04
uTorrent 45.47 6.01 0.04
Hulu 38.60 219.64 0.02
Tumblr 33.68 141.39 0.02
Dice With Buddy 30.09 70.18 0.01
iHeartRadio 27.63 1.07 0.01
Pandora 23.40 4.68 0.04
Spotify 22.78 7.17 0.02
Google Videos 19.46 0.03 0.01
CNN Mobile 18.57 3.23 0.01
NBC LiveExtra 18.28 3.43 0.01
HBO 17.68 58.33 0.01
Weather.com 16.15 3.63 0.04
Twitter 16.03 1.96 0.03
FlipBoard 14.11 0.56 0.02
ESPN Pass 13.65 618.35 0.01
New York Times 12.21 35.97 0.05

principle also holds for present-day mobile applications, i.e.,
users of the same app are likely to be close to each other.

We now restrict our attention to the 25 apps with the highest
total traffic, summarized in Tab. II. As one might expect,
YouTube has the highest traffic demand, exceeding one terabit
per second throughout the trace – and recall that our trace
only accounts for a fraction of the total traffic. Somehow
surprisingly, the app with the second highest demand is
Facebook, mostly due to its recent decision to increase the
presence of video in its users’ feeds. Netflix is only third,
with roughly half as much traffic as YouTube – but recall that
our trace includes mobile devices like smartphones and tablets,
but not desktops, laptops, or smart TVs.

Most of the other high-traffic applications fall into the
streaming category, either on-demand (e.g., XFinity PlayNow
and Google Music) or live (e.g., iHeartRadio and NBC
LiveExtra). It is interesting to observe the presence of a

browser (Google Chrome), Google Maps, and several so-
cial networking applications, including Twitter and SnapChat.
Furthermore, both peer-to-peer file exchange (uTorrent) and
games (Dice With Buddies) also rank among the highest-traffic
application, a sign that already in 2016 the relevance of those
services was significant.

A. Possible present-day verticals

We now go back to our original question, i.e., which of
the high-traffic applications can gain the most from integration
with 5G networks, and thus which providers have the potential
to become verticals. To this end, we identify those applications
that have a higher peak rate than the average and a lower
sparseness. The resulting situation is summarized in Fig. 4,
where each dot corresponds to a high-traffic app from Tab. II.

Many high-traffic applications have a peak bandwidth that
is lower than the average, i.e., they fall in the red area in Fig. 4
(and are marked in red in Tab. II). An important example is
Twitter, which has many users and a significant traffic, but
is less rich in multimedia content than other social networks.
Other applications (marked in blue in Tab. II and falling in
the blue area of Fig. 4) have a high peak rate but are sparser
than the average. Examples include the New York Times and
Google Maps, indeed the type of apps one expects to be
used more or less everywhere. Facebook and Snapchat, two
other very frequently-used apps, have almost exactly the same
sparseness as the average – slightly higher the former, slightly
lower the latter.

Finally, the white area in Fig. 4 contains apps that (i) have a
high total traffic; (ii) have a peak rate higher than the average,
and (iii) are more concentrated in space than the average.
The demand profile of these applications suits very well the
features of 5G networks, and their owners can potentially
obtain significant benefits from becoming 5G verticals. The list
includes YouTube, major streaming services such as Netflix
and Hulu, social networks like Instagram and Tumblr, along
with games like Dice With Buddies and peer-to-peer clients
like uTorrent. All together, these apps account for over 27%
of the total traffic.

In conclusion, our analysis suggests that there is a sig-
nificant set of present-day applications that would obtain
significant benefits from integration within 5G. Such a set is
important from a quantitative viewpoint, as it represents over a
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Fig. 4. Peak rate and sparseness of the highest-traffic applications.

quarter of present-day traffic, as well as from a qualitative one,
since it includes apps belonging to OTT giants like Google,
Facebook (which also owns Instragram), Netflix, and HBO.
At a more general level, it suggests that 5G networks will be
beneficial for present-day and emerging applications.

V. CONCLUSION AND CURRENT WORK

We endeavored to study the relationship between present-
day mobile applications and 5G networks, e.g., to which extent
the former can benefit from tighter integration with the latter.
To this end, we leveraged a large-scale, real-world, crowd-
sourced mobile traffic trace, and classified the existing appli-
cations based on their total traffic, peak rate, and sparseness.

We found that a wide set of applications, representing a
substantial fraction of the total traffic and belonging to major
over-the-top content providers, have the potential to benefit
from 5G integration. This suggests that the owners of said ap-
plications have an interest in becoming verticals, stakeholders
of 5G networks instead of mere customers thereof.

Work is currently ongoing to extend our analysis to how
data is served, i.e., to the relationship between backhaul
infrastructure and the demand of mobile applications.
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