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Abstract—When optimizing communication patterns in wire-
less networks, routing and link scheduling cannot be handled
separately but must be addressed jointly. Various linear pro-
gramming formulations were proposed for static networks to
optimize routing while ensuring schedulability of the achieved
result. However, most of these approaches do not allow to
obtain an optimal transmission schedule directly. Even if they
do, they do not scale well to practically relevant network sizes.
Node mobility further complicates the effort. Here, we consider
satellite networks, which are characterized by time-varying, yet
predictable topologies. We present a novel approach for the
joint optimization of routing and link scheduling. It is based
on linear programming and provides a constructive way to
generate transmission schedules. To reduce the computational
complexity, we decompose the problem and apply a series of
optimization steps resulting in an optimal transmission schedule.
As an exemplary use case we optimize the throughput of a
network consisting of 18 low-earth-orbit satellites. Our evaluation
results validate the optimality of our joint routing and scheduling
approach and demonstrate its applicability to a real-world use
case.

I. INTRODUCTION

Continuing advances in space technology have led to in-
creased popularity of miniaturized satellites in recent years.
Many scientific and commercial missions based on multi-
satellite systems have been proposed [1], [2]. Compared to tra-
ditional satellite systems consisting of a single large satellite,
these systems are more robust, allow for new applications due
to their spatial distribution and reduce costs for manufacturing
and launch. Multi-satellite systems in Low Earth Orbit (LEO)
are proposed for a variety of applications, e. g., for Earth
observation and communication [3]–[5].

LEO satellites orbit the Earth several times a day, therefore
the contact time to points on the Earth’s surface is limited.
Due to the relative movement of the satellites in their orbits,
there is no continuous network connectivity between the
satellites if relative distances exceed the communication range.
These factors combined with the limited capabilities of small
satellites present interesting challenges for the design and
implementation of communication protocols [6].

A key to designing protocols for multi-satellite systems is
to make use of the deterministic movement of the satellites.
The topology of spatially distributed LEO satellite networks is
highly time-varying, but also highly predictable. Inter-satellite

Corresponding author: O. Kondrateva (email: https://hu.berlin/ti-members).

links can be used to relay data to satellites within range of a
ground station, following a Delay-Tolerant Networking (DTN)
paradigm.

In this paper, we consider application scenarios with pre-
dictable traffic demand, like for instance periodical sensor
measurements. We assume that satellites act as relays to
cooperatively transmit data to a number of interconnected
ground stations. Based on these assumptions we propose a
linear programming formulation for throughput optimization
in multi-satellite systems.

Similar problems have been extensively studied in the past
in the context of static wireless ad-hoc networks (see related
work in Sec. II). Flow optimization in a wireless environment
is a complex problem, which requires the joint consideration
of interdependent sub-problems like routing, link scheduling,
channel assignment and power control. In the present study
our focus lies on the joint optimization of routing and link
scheduling.

Basically, two kinds of linear programming formulations
for wireless network flow optimization can be found in the
literature. The first approach models each time slot directly and
introduces a separate decision variable for each communica-
tion link in each slot [7]–[9]. This allows to directly compute
a transmission schedule, but results in a prohibitively large
number of decision variables. This makes the approach hardly
applicable even for relatively small scenarios.

The second approach is based on finding sets of links
that can be scheduled together without conflict [10], so-called
independent sets. This information is then used in the linear
program formulation. Although computing all not-interfering
sets is NP-hard [10] and the corresponding linear program
can also contain many decision variables, this formulation
is preferable, as it is possible to reduce the computational
complexity through heuristics (e. g. the so-called column gen-
eration method) [7], [11].

However, the main disadvantage of this second formulation
is that it does not result in a complete transmission schedule.
By solving a linear program in this formulation, it is possible
to calculate the total scheduled time for a given set of links.
However, optimal transmission order and duration of a single
transmission are not provided. This information is crucial for
applying the results in networks with time varying topologies,
though.
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In this work, we close this gap by proposing a linear
programming formulation which is based on calculating in-
dependent sets and provides a way to calculate a complete
transmission schedule. Our main contributions are twofold.
First, we propose a two-step linear optimization method to
jointly generate throughput optimal routing and transmission
schedules. Second, we propose a novel sliding-window-based
approach that addresses the scalability issue of optimizing
networks containing a high number of nodes. We evaluate
these algorithms using satellite trajectories from a detailed
orbit simulation model.

The remainder of this paper is organized as follows. In
Sec. II, we review the literature on flow optimization in
wireless networks. Sec. III describes our system model. The
linear programming formulation for throughput maximization
is explained in Sec. IV. In Sec. V, we then present our central
contributions: the linear programming formulation and the
sliding window-based approach. Finally, Sec. VII describes
our evaluation results and Sec. VIII concludes this paper.

II. RELATED WORK

Flow optimization by means of routing and scheduling in
dynamic wireless networks using linear programming has been
studied extensively in the past. A short overview of selected
related publications follows.

Kotnyek [12] gives a high-level overview of flow problems
in networks that change over time (dynamic network flows).
[13], [14], and [15] focus on optimal routing in dynamic
networks following the DTN paradigm but do not consider
scheduling simultaneously.

For the case of static networks, solutions for the joint routing
and scheduling problem have been proposed using linear
programming (LP) [10], [16], [17], or mixed integer linear
programming (MILP) [7], [18], where the latter is applied if
scheduling is to be considered on the granularity of individual
packets. The linear column generation method has been used
to approximately solve the linear programs [7], [17]. Using
the non-linear column generation method, joint routing and
scheduling may be considered w.r.t. non-linear optimization
objectives [19].

More recently, joint routing and scheduling in dynamic
wireless networks has been considered. In [20] the subgradient
method is applied. It is assumed that all payload data is
available at the node in advance, whereas our approach allows
to incorporate payload to be generated at intermediate nodes
at any time. In [8], [9] MILP is used in order to consider
scheduling with respect to individual time slots. According to
the results of [7], this approach comes at prohibitively high
computation cost. As opposed to our work, [8], [9] do not
consider secondary interference in their network model.

The study of optimal scheduling using ILP is not limited
to the wireless multi-hop use-case but has recently also been
applied in the context of (wired) time-sensitive software-
defined networks [21]–[23].

Image courtesy of Analytical Graphics, Inc. (www.agi.com)

Fig. 1: 3D model of the studied scenario consisting of 18
satellites and four ground stations

III. PROBLEM STATEMENT

A. Abstract Mission Model

We assume a constellation of LEO satellites that gather
observation data, the payload, that is to be delivered to a
network of ground stations (see Fig. 1).

The source traffic rate, i. e. the rate at which data is gener-
ated at the satellites, may differ between satellites and vary in
time. In our evaluation we consider the case of homogeneous
constant bit rate source traffic. Our formulation allows for
different shapes of source traffic as well, like bursts, as long as
the shape is known ahead of time. Any payload is considered
“delivered” once received by any of the ground stations,
thus payload is never transmitted from a ground station to
a satellite. Satellites are equipped with radio transceivers and
omnidirectional antennas which enable sat-to-sat as well as
sat-to-ground communication. In addition we assume each
satellite to carry a GPS receiver and antenna, which has been
done in the past for nanosatellites [24]. We therefore assume
the satellites’ clocks to be sufficiently synchronized.

A sophisticated dissemination plan for the optimized trans-
mission schedule is beyond the scope of this paper. We
assume that during every ground station contact a marginal
part of the available communication band width is used for
bidirectional satellite control communication anyway. This
may be used for dissemination as well. In addition, in-network
contact plan dissemination techniques designed for contact
graph routing [25] might be applicable.

B. Network Model

For a fixed point in time (the static scenario), commu-
nication opportunities are modeled by a connectivity graph
C = (NC , LC), in which each satellite and ground station is
represented by a node (cf. Fig. 2a).

Inter-satellite and downlink communication opportunities
are modeled as links of fixed capacity, where Capij denotes
the capacity of link (i, j) ∈ LC . The process of payload
generation is modeled by a virtual node s that acts as the only
source and is connected to each satellite with a directed link
whose capacity is the corresponding satellite’s data generation
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rate. Analogously, each ground station is connected to a single
virtual destination node d with a virtual link of unlimited
capacity. This enables us to treat the situation of multiple
real sources and multiple possible destinations efficiently as
a single-source-single-destination problem.

We consider the simplified case of unlimited data storage
capacity in each satellite. However, handling limited storage
appears well feasible and will be a future extension.

C. Transmission and Interference Model

At each point in time, we assume that two satellites can
either communicate with a fixed inter-satellite capacity, or
cannot communicate at all. Likewise, a satellite can either
send data to a ground station with a fixed downlink capacity,
or cannot communicate to the ground station at all. These
communication opportunities are modeled as directed links in
the connectivity graph.

To incorporate interference, we adopt the approach from
[10] and introduce a (undirected, unweighted) conflict graph
F = (LC , LF ) whose vertices are the connectivity graph’s
links. Two vertices are connected by a conflict edge if and
only if the corresponding connectivity links interfere with each
other, i. e., if data cannot be sent simultaneously via both
links. The conflict graph may incorporate primary interference,
i. e., the restriction that two links interfere, if they share a
common node. It can also include secondary interference, i. e.,
the interference of two disjoint links.

The connectivity graph as well as the conflict graph are
determined by the transmission and interference model in use.
To model wireless interference, the protocol model and the
physical interference model are often employed [26]. Similar
to [10] and [18], we will use the protocol model for our eval-
uation to reduce computation complexity. The physical model
can be incorporated into our linear programming formulation
as described in [7].

IV. THROUGHPUT MAXIMIZATION FOR MOBILE
NETWORKS

This section describes how a linear programming approach
can be used to determine the maximum throughput of a mobile
network. First, we review the formulation for static networks
proposed by Jain et al. in [10]. Subsequently, we propose our
generalization of this linear program to mobile networks.

A. Static Scenario

Recall our notation from Sec. III. For each link (i, j) ∈ LC

we define a variable fij which denotes the amount of flow
allocated to the corresponding link.

Let N+
C (i) := {j ∈ NC : (i, j) ∈ LC} denote the set of

successors and let N−C (i) := {j ∈ NC : (j, i) ∈ LC} denote
the set of predecessors of node i ∈ NC . Further, assume that
the entire transmission time is equal to T . In the absence of
interference, a linear program maximizing the throughput from
s ∈ NC to d ∈ NC can be formulated as follows [10]:

maximize
∑

j∈N+
C (s)

fsj (1)

subject to (1.1)–(1.5)∑
j∈N+

C (i)

fij =
∑

j∈N−C (i)

fji, ∀i ∈ NC \ {s, d} (1.1)

∑
i∈N−C (s)

fis = 0 (1.2)

∑
i∈N+

C (d)

fdi = 0 (1.3)

fij ≤ Capij · T ∀(i, j) ∈ LC (1.4)

fij ≥ 0 ∀(i, j) ∈ LC . (1.5)

The objective states that the outgoing flow of the source
should be maximized. The first constraint guarantees flow
conservation, i. e., that all data transmitted by the source will
be delivered to the destination node. The second and the third
constraints define that the incoming flows of the source and
the outgoing flows of the destination have to be equal to zero.
Otherwise the linear program could maximize the objective
function by creating a circular flow through the source. The
fourth constraint is necessary to ensure that capacities of the
links are taken into account. Finally, the fifth constraint states
that only non-negative flow values are allowed.

This formulation is valid for static, wired networks. To
adapt it for wireless communication, interference is taken into
account by means of the conflict graph F . The key idea
behind the conflict graph approach in the context of linear
programming is to find all sets of links that can be active
simultaneously. This corresponds to the graph theoretical
problem of finding all maximal independent sets (MISs) in
the conflict graph [10].

Let K denote the number of MISs in F , and let Ik : k ∈
{1, 2, . . . ,K} denote the MISs. For each Ik a new variable
λk ∈ [0, 1] is defined that denotes the amount of time for
which the links in Ik may be active. Each link can be a member
of multiple MISs. Therefore, the total amount of time in which
a link may transmit data is the sum of the corresponding
lambda variables. The capacity constraint (1.4) can hence be
reformulated as follows:

fij ≤ Capij ·
K∑

k=1
Ik3(i,j)

λk where
K∑

k=1

λk = T.

The equality constraint here ensures that exactly one indepen-
dent set is active at each time.

For simplicity, we assume that both fij and λk are contin-
uous, thus allowing arbitrary short transmissions. A similar
ILP formulation for scheduling transmissions with packet
granularity is discussed in [7]. Applying our results to this
formulation is straightforward.

B. Adaptation for Mobile Networks

In a LEO satellite constellation, the wireless connectivity
and interference change over time. In our model, these dy-
namics are captured by changes in the connectivity graph and
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Fig. 2: Static and mobile network represented as graphs.

the conflict graph, respectively. Links in these graphs may
appear or vanish at discrete, pre-known points in time.

In order to generalize the static formulation to the mo-
bile network, we represent all changes in the topology as
a time-expanded connectivity graph C(p) just like the ex-
tended time-evolving graphs introduced in [9]. Consider the
example shown in Fig. 2b. The entire transmission time
[t0, tM ) is divided into a sequence of consecutive intervals
p =

(
[t0, t1), [t1, t2), . . . , [tM−1, tM )

)
, referred to as “time

frames”, during which the topology, i. e., both connectivity
and conflict graph, remain static.

For each time frame, we instantiate a copy of NC as well
as the connectivity links that capture the actual topology.
To represent buffering of data across time frames, additional
“buffer links” between instances of the same node in sub-
sequent time frames are introduced. The virtual source and
destination nodes are not duplicated. Instead, virtual links to
all instances of the satellites and ground stations, respectively,
are created.

The corresponding conflict graph is of much simpler struc-
ture. Neither do virtual links or buffer links interfere with each
other or any other link, nor do connectivity links of different
time frames interfere with each other. Therefore, the conflict
graph corresponding to the time-expanded connectivity graph
is simply a sequence of independent static conflict graphs
corresponding to the sequence of time frames.

Applying the linear program formulation (1) discussed
above to mobile networks in this formulation requires only
small changes:

1) Identify the time frames during which the connectivity
and interference graphs are static.

2) For each time frame, introduce a copy of the set of
network nodes.

3) Compute the independent sets within each time frame.

TABLE I: LP1 and LP2 solution for the network from Fig. 4

LP1

f1,2 = 20 kB fs,2 = 60 kB

f2,1 = 0kB λ1 = 4 s

f2,gs = 80 kB λ2 = 0 s

fs,1 = 20 kB λ3 = 16 s

Total throughput: 80 kB

LP2

f1,2 = 15 kB fs,2 = 60 kB

f2,1 = 0kB λ1 = 5 s

f2,gs = 75 kB λ2 = 0 s

fs,1 = 15 kB λ3 = 15 s

Total throughput= 75 kB

4) From s, create unidirectional data generation links to
each satellite in each time frame; likewise, create data
collection links from each ground station in each time
frame to d. As these links are virtual, they cannot be in
conflict with any other links, so they are part of every
MIS of the corresponding time frame.

The linear program for this extended graph is then struc-
turally equivalent to (1) above. The resulting formulation is
below referred to as LP1.

V. DERIVING ROUTING INFORMATION

The linear program discussed in the previous section is
designed to calculate the maximum throughput of a wireless
network. In addition, information about the total amount of
data transmitted over each link (fij) and the total amount
of time for which each independent set of links should be
active (λk) is computed. However, for scheduling the order in
which the independent sets transmit and the lengths of their
respective transmission slots have to be determined as well.
Even in simple cases, optimally choosing these quantities can
be hard. Consider the example in Fig. 4.

Nodes 1 and 2 both transmit data to node gs. Only node 2
has a direct connection to gs and serves as relay for node
1. The nodes s and d are added to model the process of
data generation and collection as discussed in the previous
section. It is assumed that nodes are not able to receive and
transmit simultaneously (primary interference), which means
that all links except for the outgoing links of the node s
are in conflict with each other. The MISs are shown in
Fig. 4. We solve the linear program as presented above for the
following set of values: Cap1,2 = Cap2,1 = Cap2,gs = 5 kB/s,
Caps,1 = Caps,2 = 3 kB/s. Furthermore, it is assumed that the
total transmission time is 20 s and that the topology remains
stable for the whole transmission time.

Solving the LP1 linear program for this setting provides
the flows and time slot lengths shown in Tab. I. The maximal
achievable throughput is equal to 80 kB. This value coincides
with the amount of flow on the link (2, gs), because gs is
the only receiver in the network. Due to constraint (1.1) all
generated data will be delivered, so 20 kBs generated at the
node 1 and 60 kB generated at node 2 will be transmitted to
gs.

Although the length of the assigned times slots (λk) fit
the flow variables (fij), this information is not sufficient to
schedule the transmissions accordingly. For example, assume
that node 1 is chosen to transmit first and the length of its
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transmission slot is set to 4 s (according to the value of λ1).
Because the data generation rate is equal to 3 kB/s, only 12 kB
instead of 20 kB (the value of f1,2) will be available for
transmission. A similar problem arises, if the second node
transmits first.

The reason for this discrepancy lies in the fact that the linear
program does not put transmissions into any chronological or-
der. Instead, the values of the flow variables are restricted only
by capacity and flow conservation constraints. For this reason,
the LP1 formulation represents a best case bound where all
data which needs to be forwarded by a particular node has
already reached this node by the time the corresponding link
is scheduled for transmission. This example shows that it is
not always possible in practice to achieve the exact value
calculated based on LP1. However, one can get very close to
the maximum by scheduling the independent sets in the correct
order and choosing the optimal lengths for transmission slots.

In theory, this could be mitigated by keeping the transmis-
sion slots very short. However, this quickly comes to limits in
practice due to a lack of synchronization between the nodes
and because of technical limitations in real communication
systems. Moreover, for mobile networks—like our satellite
use-case—additional factors such as varying topology and
potentially short contact periods should be taken into account.
Thus, the need of a better solution becomes apparent. In this
work, we incorporate time dependencies into the aforemen-
tioned linear program. This allows to compute the optimal
scheduling order of independent sets as well as the required
lengths of transmission slots as part of the linear program.

In order to discuss the independent sets’ scheduling with
respect to temporal order we assume that the independent
sets are arranged in some arbitrary but fixed order I =
(I1, . . . , IK) and further assume that Ii is scheduled for
transmission before Ij if i < j. For each link (i, j), consider
the ordered list Kij of indices corresponding to all independent
sets containing (i, j). Further, we define a variable fkij for
k ∈ Kij denoting the amount of data sent via the link lij
during the transmission period of the independent set Ik. The

value of the fij variables in LP1 can then be calculated by
summing up all fkij variables:

fij =
∑

k∈Kij

fkij .

Therefore, the reformulation of the linear program from the
previous section with the help of fkij variables is straightfor-
ward.

With the help of fkij it is possible to ensure that all data
scheduled for transmission in a particular independent set will
be available at the source node in time. The corresponding
constraint can be formulated as follows:

∀i ∈ NC \ {s} ∀j ∈ N+
C (i)∀k ∈ Kij :

fkij ≤
∑

m∈N−C (i)

∑
k′∈Kmi

k′≤k

fk
′

mi −
∑

m∈N+
C (i)

m6=j

∑
k′∈Kim

k′≤k

fk
′

im −
∑

k′∈Kij

k′<k

fk
′

ij (2)

This constraint ascertains that the amount of data, which
can be transmitted over a link when a particular independent
set is scheduled, cannot exceed the total amount of data
received by the node so far minus the total amount of data
already transmitted by the node. The LP1 formulation plus
this additional constraint is referred as LP2. The LP2 solution
corresponding to the example shown in Fig. 4 is presented in
Tab. I.

One last limitation remains to be addressed and overcome,
though. In contrast to LP1, the scheduling order of the
independent sets is now determined by I, i. e., is itself an input
to the linear program LP2 and thus can so far not be optimized.
For this example the node 1 was chosen to transmit first. This
explains the lower values of the variables fs,1, f1,2 and f2,gs,
compared to the results of LP1. LP2 takes into account that
the buffer of node 1 is empty and that the data is transmitted
from node 1 to node 2 in one slot, which lasts 5 s. Therefore,
only 15 kB can be transmitted within this slot.

Clearly, LP2 does not yet fully achieve the goals formulated
above. This results from two unintended limitations in LP2’s
formulation. First, the order of the independent sets is chosen
arbitrary. Second, it is assumed that each independent set can
be scheduled only once. It puts certain restrictions on the
length of transmission slots.
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In order to overcome these limitations, we add additional
copies of the independent sets to the linear program. The
list I of all MISs is replaced by I ′ = N × I, i. e., by a
concatenation of N copies of I. This effectively turns the
corresponding connectivity graph into a multigraph, where
each pair of connected nodes is now connected by N copies of
the link, yielding the possibility to change the effective order
of MISs to compute a better solution.

Effectively, the original independent sets can be utilized in
an order differing from I in the process of solving the linear
program. The flow variables of the “misplaced” independent
sets will be set to zero in the resulting solution. Furthermore,
shorter transmission slots are now possible, allowing for
better utiliziation of link capacities. Thus, both the order of
independent sets and the lengths of transmission slots can now
be computed as a part of the linear program solution. The
graph from Fig. 3 shows that, as more copies of I are added
to the linear program, the total throughput converges quickly
towards the optimal, ordering-agnostic value computed with
the help of LP1.

The proposed approach achieves an optimal solution by
adding redundancy. This inevitably leads to an increase of the
size of the linear program and hence limits scalability. In order
to make this approach practically applicable, the number of
independent sets should be kept as small as possible. This can
be achieved by solving LP1 first. If the value of some flow
variable is equal to zero, the corresponding link can be safely
removed from the connectivity graph. The evaluation results
in Sec. VII show that the linear program size can be reduced
considerably. The overall procedure is as follows:

1) Compute LP1 and remove from the connectivity graph
all the links that are not used in the solution.

2) Compute the optimal solution with LP2 by adding more
copies of the independent sets until the total throughput
reaches the maximal value calculated by solving LP1.

VI. SLIDING WINDOW APPROACH

The main drawback of the time-expanded graph is its
increased size which in turn causes an increase of the cor-
responding linear program’s size. This limits the scalability of
the proposed approach. A naı̈ve solution would be to split
the time-expanded graph into a number of blocks and to
compute them separately. However, this method ignores buffer
links between consecutive blocks and therefore results in a
significant decrease in throughput. To mitigate this effect, we
propose a sliding-window-based method.

The key idea is to solve a series of linear programs for
overlapping time intervals and to combine the results into one
overall solution.

This iterative algorithm (for a schematic visualization see
Fig. 6) is parametrized by a window size W and a step size
S, both in units of time frames and satisfying W > S. For
ease of introduction, we will here explain it on the example
of LP1. As this method is unaffected by the duplication
of independent sets it can as well be applied to LP2. For
initialization (iteration 0) the linear program corresponding to

0 1 2 3 4 5 6

Initialization: no buffer inflow
(Iteration 0) in first time frame.

3 4 5 6 7 8 9

Iteration 1: fixed inflows fB∗
from solution
of iteration 0.
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Fig. 6: The sliding window approach.

the window [t0, tW ) is solved. Then, R =
⌈
M−W

S

⌉
iterations

are performed, where M is the total number of time frames.
In the ith iteration, i ∈ {1, 2, . . . , R}, the linear program for
[tiS , tiS+W ) is solved, not excluding the buffer links at time
tiS , but representing them as links of fixed flow from a virtual
buffered-data-node B to each node in the frame [tiS , tiS+1).
The corresponding fixed flow values are taken from the result
of iteration i − 1 (compare Fig. 6, dashed ellipses). In the
final Rth iteration the (possibly shorter) window [tRS , tM ) is
considered.

The overall solution is composed as follows: from the
solution of each iteration i = 0, . . . , R− 1, the first S frames
are used. The final Rth iteration’s solution is used completely.

The proposed method can effectively cope with both mem-
ory and computation speed issues. The parameter W lim-
its the size of the linear programs and can be chosen to
address memory restrictions. The parameter S controls the
total number of linear programs that are computed and, thus,
affects the total computation speed. It is also important to note
that results are produced beginning with solutions for early
time frames, which will not be changed during subsequent
iterations. For this reason it is possible to make use of each
linear optimization result as soon as it is available—without
the need to wait for the completion of the overall computation.

VII. EVALUATION

In this section, the approach presented above is applied
to a LEO satellite network. We assume a satellite system
consisting of 18 satellites equally distributed on six orbital
planes, resulting in a so-called 45◦ : 18/6/0 Walker con-
stellation, although other orbital inclinations are considered
as well. By this orbit configuration and a typical altitude for
LEO satellites of 600 km a high global coverage is achieved.
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Due to this high global coverage, Walker constellations are
widely used in earth observation missions, e. g. in the Fire
Observation Constellation [27], or for positioning services
such as Galileo [28] or NAVSTAR/GPS [29]. We assume data
to be transmitted to four ground stations located in Berlin, Rio
de Janeiro, Tokyo and Würzburg. To enable communication
in absence of a direct connection with a ground station, all
satellites serve as relays for each other.

Assuming a transmission range R = 5662 km which cor-
responds to the maximum range at which the line of sight
between two satellites is not obstructed by the Earth, an
inter-satellite link (i, j) of the connectivity graph exists if
‖~xi − ~xj‖ ≤ R, where ~xn, n ∈ NC denotes the three-
dimensional Euclidean coordinates of node n. Connectivity
graph edges for satellite-to-ground links are defined analo-
gously with a transmission radius of R/2. Two links (i1, j1)
and (i2, j2) are connected with a conflict graph edge, if
{i1, j1}∩ {i2, j2} 6= ∅ (primary interference) or (j1, i2) ∈ LC

or (j2, i1) ∈ LC (secondary interference). This means that we
assume secondary interference to occur if the receiving node
of one link is within the transmission range of the other link’s
sender.

As described in Sec. III, we distinguish between four
types of links: the outgoing links of s (added to model data
generation process), the links between the copies of the same
node (model buffering), the links between ground stations
and d, and the rest. The capacities of the s-links, denoted
Caps∗, were considered equal and were varied between 1 kB/s
and 5 kB/s. The resulting constant bit rate source traffic mirrors
the data generation characteristics of missions with high and
fixed measurement frequencies, as, for example, the magnetic
field measurements generated by the SWARM mission [30].
The capacities of all other links were set to 5 kB/s. If not
stated differently, the results presented in this section refer
to Caps∗ = 1 kB/s, unlimited buffer size, and 45◦ orbital
inclination. All results presented below are calculated for one
full orbit, using Gurobi Solver [31] v.7.0.2 on one core of
a Intel-Xeon E7-4880 CPU using not more than 2.6 GiB of
RAM. 95% confidence intervals are provided for all non-
deterministic values.

The number of independent sets is one of the key factors
that influence the size of the linear program. The total number
of the independent sets for the scenario described above is
equal to 1015650. The corresponding LP1 linear program
is represented by a 7588 × 1023119 matrix that could be
constructed and solved within (348.6 ± 4.6) s. The linear
program LP2 that includes the additional constraints (2) is
much larger and exceeds the 1000 GiB memory available in
our evaluation setup.

In order to make LP2 feasible, we make use of LP1 to
significantly reduce the number of independent sets to be
considered. The number of independent sets whose λ variables
are not equal to zero in the solution for LP1 is shown in Fig. 5
for different values of Caps∗ and orbital inclination. For 45◦

this amount ranges from 314 to 101 out of ≈ 106 MISs in
total, i. e., only a small fraction of all MISs is utilized in the
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Fig. 7: Maximal throughput achieved by splitting the linear
program into parts.

optimal solution. To exploit this sparsity, we use LP1 as a
preprocessing step of LP2 to compute which independent sets
contribute to the solution: Î = (Ik ∈ I : λk > 0). Then we
construct the LP2 linear program using only I ′ = N × Î as
candidate independent sets. The resulting LP2 matrix has the
size of 44883× 27055.

Another important influence factor is the number of copies
of independent sets necessary to reach the optimal throughput
when computing LP2. In our evaluations, no more than nine
additional copies are required for our scenario to get within
0.01% of the optimal throughput.

Our results also show that the presented approach does not
cause a significant computational overhead compared to LP1.
While (348.6 ± 4.6) s are required to compute LP1, the total
computation time for LP2 is only (82.9±0.3) s. Note that both
computation time and the number of additional independent
sets required for LP2 depend on the difference between Caps∗
and link capacities. Thus, in our case it is possible to achieve
even better results if a higher value of Caps∗ is assumed.

The presented results show that our approach can be applied
for real-world scenarios. A straightforward approach to further
improve scalability would be to split the time-expanded graph
into a number of intervals and to compute them separately. The
main drawback here is a decrease in throughput. To mitigate
this effect, the sliding window approach described in Sec. VI
is used. The results of applying these two approaches can be
seen in Fig. 7.

It becomes clear that splitting the problem into parts can
lead to a considerable loss depending on the amount of
data available for transmission and the size of the intervals.
The graph also shows that these are not the only factors
influencing the throughput. For example, splitting the program
into five intervals sometimes leads to better results compared
to splitting the program into four intervals. This leads us to the
assumption that the choice of splitting points may constitute
an additional influencing factor. For instance, if such a point
occurs before a period with more connectivity, it may happen
that the data available for transmission does not suffice to
utilize the links.

Compared with splitting the program into parts, the loss
in throughput which results from using the slide window ap-
proach is much lower. This improvement is, however, achieved
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at the expense of a considerably higher computation load. For
large programs it would therefore be reasonable to combine
both approaches.

VIII. CONCLUSION

In this paper we have presented a new linear programming
formulation for throughput maximization in satellite networks.
Unlike other solutions based on calculating independent link
sets, our formulation allows to compute a complete transmis-
sion schedule directly. In particular, the optimal transmission
order is determined as a part of the linear program solution
instead of relying on heuristics.

Our first formulation, LP1, is the straightforward adaption of
a linear programming formulation for computing throughput-
optimal joint routing and scheduling in static wireless net-
works to the mobile use case of a LEO satellite constellation.
Our second approach, LP2, extends LP1 to incorporate link
scheduling and transmission slot length’s, thereby providing
a complete transmission schedule in a mobile setting. In our
evaluation we have shown that using LP1 as preprocessing
step, LP2 can be applied well to real-world scenarios. More-
over, the computation of scheduling order requires only very
limited additional computation time.

To compensate for the inevitable increase in the size of
the linear program, which results from node mobility, we
developed a novel scaling window-based approach. This ap-
proach allows to find a good trade off between optimality and
computation complexity. We showed that our solution provides
significantly better results then a simpler method, where the
time-expanded graph is split in a number of intervals which
are considered separately.

In future work we plan to consider further real-world
challenges like a more realistic transmission and interference
model, sophisticated in-orbit dissemination of transmission
schedules, as well as finite buffer sizes.
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[21] F. Dürr and N. G. Nayak, “No-wait Packet Scheduling for IEEE Time-
sensitive Networks (TSN),” in RTNS ’16, Oct. 2016, pp. 203–212.

[22] E. Schweissguth et al., “ILP-based Joint Routing and Scheduling for
Time-triggered Networks,” in RTNS ’17, Oct. 2017, pp. 8–17.
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