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Abstract—Cooperative vehicular applications require severe to
moderate requirements of accuracy and latency according to
their purpose. Those applications mainly rely on the periodic
exchange of information directly causing congestion problems on
the communication channel and thus obtaining unreliable infor-
mation at the application level. Adaptive and reactive beaconing
tries to overcome that fact adapting transmission parameters
to different criterions such as channel load, application require-
ments or specific situations to improve the overall performance of
the vehicle network. Nevertheless, it has not yet been determined
to date if the information disseminated by these protocols is
suitable for the implementation of specific applications. In this
context, we analyze the system behavior in a realistic simulated
high dense intersection where the probability of packet reception
becomes unpredictable and analytical models become inaccurate.
We present a critical analysis on the performance of four relevant
state-of-the-art protocols with different aims and approaches
while their performance is evaluated with respect to position
accuracies required by different kind of RSU-based applications.

I. INTRODUCTION

Currently, there is a need for vehicular safety applications
that are to be implemented in the coming years to have
accurate, continuous and updated information because of their
strict requirements. Those applications mainly rely on the
periodic broadcasting of Cooperative Awareness Messages
(CAM) on the ETSI ITS-G5 Control Channel (CCH) [1]. How-
ever, current standards and proposed solutions suffer severe
congestion problems in the communications channel when the
number of nodes, i.e. vehicles, grows within the network [2].
These problems result in large packet losses and, therefore, in
a delay of the information that nodes eventually receive, which
entails a deterioration in the performance of the applications
and even a limitation for their implementation. The main
reason that causes this problem is the need to comply with
the requirements of the so-called cooperative awareness that
requires the periodic exchange of vehicle status information
through latencies of the order of 100 ms. Consequently, to
alleviate this problem, standardization bodies and researchers
propose protocols to adapt mainly the frequency, power and
speed of transmission depending on, for example, the load of
the channel, the traffic density, the dynamics of the vehicles,
specific situations or application requirements. Two surveys
on adaptive beaconing can be found in [3] and [4].

The most relevant trend that is being followed is to adapt
the beaconing frequency as a function of the channel load
so as not to exceed a threshold considered optimal with

respect to the throughput of the channel, which in turn leaves
capacity to receive messages that promptly inform of specific
events. This type of protocols are named congestion control
protocols which, in addition, most of them are based on
the fairness postulation, i.e. that all vehicles must have the
same performance and the same opportunities within the
network. Two of these examples are LIMERIC and PULSAR
currently considered by ETSI [5] to be included in the ITS-G5
vehicular standard together with their DCC mechanism and the
CAM triggering conditions. Despite this, the aforementioned
approaches are not optimal at the application level [6] [7]
[8] since each vehicle has different needs at each instant
of time to meet the requirements of the applications. For
example, authors of [7] mention that current state-of-the-
art congestion control mechanisms are not able to support
Intersection Assistance Systems (IAS) adequately so they
propose the use of a situation-based rate adaptation algorithm
by allowing temporary exceptions for vehicles in dangerous
situations relying on their Intersection Collision Probability
metric. On the other hand, awareness control protocols aim
to adequately support cooperative vehicular applications and
traditionally have been designed and evaluated separately
from congestion control protocols [9]. Therefore, [9] propose
INTERN, a beaconing protocol that integrates a congestion
control process as a function of the channel load and an
awareness control process which aims to adapt the power to
the minimum necessary so that the messages are received with
certain reliability at an individual warning distance. However,
none of these protocols take into account the position accuracy
at the application level, which is a relevant metric for most
safety applications like in [10], [11] and [12], and moreover
their application requirements are based on the assumption that
vehicles information is up to date and has no error.

The three main scenarios mentioned in the VANET liter-
ature and where vehicular safety applications acquire more
relevance are: highway and urban and rural intersections be-
cause of its unique characteristics. Likewise, packet reception
affects critically the performance of the applications and is
determined by a number of influencing factors, such as radio
wave propagation and interferences issuing from simultaneous
transmissions. Therefore, we focused on intersections where
scalability is a major problem due to the high density traffic
in peak hours leading to high collision probabilities. As said,
the probability of reception is based on a plurality of factors.
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Fig. 1. Intersection layout.

For example, IEEE 802.11p MAC contentions, the capturing
effect and the hidden terminal problem all effect message
reception but are very difficult to express analytically [13].
Thus, we empirically analyze the system behavior in a high
dense intersection where the probability of packet reception
becomes unpredictable and models become inaccurate.

Vehicle-to-Infrastructure (V2I) applications considered by
ETSI are many such as: intersection collision warning, wrong
way driving, traffic condition warning, signal violation warn-
ing, traffic light management and optimal speed advisory, traf-
fic information and recommended itinerary. Those applications
have different requirements but required position accuracies
can be grouped into three scales for better evaluation: low
(10-20 or even 30 m), medium (1 to 5 m), and high (a meter
or sub-meter) [14]. Then, we evaluate the performance of
four relevant beaconing protocols with respect to intersection
application requirements from the point of view of a Road
Side Unit (RSU) to see if the information provided by state-
of-the-art protocols is accurate enough to support RSU-based
applications.

Summarizing, we make a critical analysis about why some
protocols with different aims and approaches perform better
or not into the chosen scenario and then we compare the
results with the aforementioned scale accuracies required by
applications. To do this, first we make a semi-analytic analysis
of the position error derived either by lost packets or by vehicle
dynamics. Then, this analysis helps us to understand how
different protocols perform. The main contributions of this
paper are:

• a semi-analytic analysis of the position error behavior,
• and a performance evaluation of state-of-the-art beacon-

ing protocols under the considered scenario in a realistic
simulation environment (Veins [15]).

This work is organized as follows. The scenario considered
is described in Section II and then the error behavior analysis
is derived under Section III. Protocols considered are listed
and briefly described in Section IV while their evaluation is
done under Section V. Finally, conclusions and future work
are exposed in Section VI.

TABLE I
PERCENTAGE (ρ ) OF VEHICLE TYPES TOGETHER WITH THEIR LENGTH
(L), ACCELERATION (a), DECELERATION (d), AND MAX SPEED (vmax)

Class ρ L [m] a [m/s2] d [m/s2] vmax [m/s]

A 0.29 4 2.6 4.6 ∼ N (44, 0.1)

B 0.7 5 2 4.2 ∼ N (33, 0.1)

C 0.01 15 1 3 ∼ N (22, 0.1)

II. SCENARIO DESCRIPTION

The selected scenario is an unobstructed intersection with
a RSU that is responsible for the real-time monitoring of all
vehicles, Intersection Collision Avoidance (ICA) and traffic
management. Figure 1 shows the topology of the scenario
which consists of an intersection regulated by traffic lights
of four 500 m long roads with six lanes each, three in each
direction. The RSU is located in the middle of the intersection
maximizing Line-Of-Sight (LOS) at a height of 5 m. We
assume that all nodes in the network communicate accord-
ing to the IEEE 802.11p standard. CAMs are periodically
broadcasted by vehicles on the ITS-G5 CCH with a Best
Effort Access Category (AC VE) [16], which results in the
listening period (Arbitration Inter-Frame Space, AIFS) and
Contention Window (CW) mentioned in Table II together with
other relevant IEEE 802.11p PHY and MAC parameters.

Three different vehicle classes are generated with different
dynamics, lengths and probabilities of appearance, because
these values affect the behavior of the vehicles. Vehicle speeds
are normally distributed to achieve realistic car following
behavior. Table I values result in a speed distribution where
95% of the vehicles drive between 80% and 120% of the
maximum speed allowed. Only high density traffic emulating
realistic rush hours is considered in this work because low
and medium densities where simulated in [17] under the
same scenario showing no relevant differences w.r.t. position
accuracy. Figure 7 shows the evolution of the vehicle number
across time in an area of 19.5 km2. Note that vehicles stop
appearing at t = 160 s. All vehicles move according to the
default SUMO Krauss driver model and the vehicle arrival
process for each road follows a B(160, 0.25) with a trial every
second which approximates a Poisson distribution.

The radio signal attenuation is modeled as a function of
path, shadowing and fading effects, Figure 2. The Two-Ray
Interference model is used to capture radio signal attenuation
over distance and ground reflection effects because transmis-
sions experience either constructive or destructive interference
with its own ground reflection [18]. The small scale and the
large-scale fading are both represented by the Nakagami model
with m = 3 for distances between 0 to 50 m (approximating
Rician distributed channel conditions where a LOS path ex-
ists), m = 1.5 from 50 to 150 m and m = 1 for distances
above 150 m [19]. Also as there is a substantial impact of
shadowing on the performance of congestion control protocols,
radio shadowing effects caused by other vehicles are modeled
using [20].
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Fig. 2. Simulated probability of packet reception for different transmission
powers computed for one vehicle alone using the channel model described in
Section II.

TABLE II
DEFAULT IEEE 802.11P PHY & MAC PARAMETERS

Parameter Value

ITS-G5 Channel CCH (5.9 GHz)
Bandwidth 10 MHz

Data Rate (R) 6 Mbps

Beacon Size (L) 300 B
Transmission Power (Pt) 23 dBm
Sensitivity (CSth) -95 dBm
AIFS, CWmin 110 µs, 15 slots

III. ERROR BEHAVIOR ANALYSIS

We evaluated the performance of static beaconing in order
to understand how the system model behaves in the defined
scenario where dynamics and network behavior are highly
unpredictable. Due to these qualities the purely mathemat-
ical analysis of the position error becomes highly complex
and, therefore, we present a semi-analytical analysis. 10 Hz
beaconing was selected as was originally suggested by ETSI
for cooperative awareness applications to meet the 100 ms
requirement. The main metric analyzed in this section is
the position accuracy because safety applications have strict
requirements in terms of awareness reliability and latency. It
is defined as the error between the current vehicle’s physical
position and the last reported position to the RSU which
implicitly entails the requirement of latency. Hereafter it is
assumed that the positioning of the vehicles is error free
because we are interested in the error contribution from the
performance of the protocols not in the node positioning of
itself.

Firstly, assuming ideal channel conditions, a constant vehi-
cle speed v and uniformly distributed events of looking up the
position during a fix beaconing interval tb, the average position
error at the receiver can be expressed as half the minimum plus
the maximum position errors as [12]:

ē = vttx +
v(tb − te)

2
, (1)
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Fig. 3. Average position accuracy at the RSU and speed of vehicles.

where ttx is the transmission time of the beacon and te is
the time between the position look up and the next beacon
reception.

However, the reception of the next beacon depends on
several factors as a packet may not be received due to low
SINR (i.e., collision) or low SNR (i.e., reception power below
the receiver’s sensitivity). This can be seen in Figure 3 where
the average position error at the RSU increases as the average
speed of vehicles drops while congestion occurs, contrary to
(1). Considering this and neglecting the error contribution of
ttx (cm-order), the maximum instant position error of a vehicle
can be estimated as

êk = vkE{tb′}, (2)

where tb
′ is the actual time between two consecutive

beacons and, therefore, it is a random variable. Its expec-
tation can be expressed as the number of consecutive tries
needed to receive a beacon multiplied by the beacon interval,
E{tb′} = E{#tries}tb where (assuming that packet losses
are independent across time)

E{#tries} =

∞∑
i=1

i P
(i−1)
col (1− Pcol). (3)

Note that in our scenario the probability of a collision can be
estimated as Pcol ≈ 1 − PDR because packet losses due to
SNR represent the 0.6% of the total packet losses.

The error defined in (2) is a function of the vehicle dynam-
ics, which roughly depends on traffic conditions and vehicle
characteristics, and of the probability of packet reception (i.e.,
Packet Delivery Ratio, PDR), which roughly depends on the
channel load, channel attenuation and hidden nodes. Thus, we
divide the error analysis of the scenario into two parts:
• the error component due to vehicle dynamics
• and the error component due to packet losses.

A. Influence of vehicle dynamics

Looking at Figure 3, it can be seen that the error follows two
different patterns as a function of time as stated in (2). On the
one hand, there are periodic fluctuations in the error similar to
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Fig. 4. Average spatial distribution of the position error and vehicle speed.

the evolution in time of the average speed. These are due to
the behavior of vehicle traffic at the intersection. For example
in point A of Figure 3, one of the time instants in which
the error is minimal, corresponds to when immediately traffic
lights turn green: vehicles in queue are stopped and those at
the beginning start to accelerate, therefore the average speed
of vehicles is much lower and the resulting error as well. Once
the traffic light has turned green, the vehicles accelerate until
reaching the maximum speed to leave the intersection, point B
in Figure 3. In addition, vehicles that previously stood in the
queue move towards the traffic light. All of these increases
the average speed and consequently decreases the position
accuracy. Finally, the same phenomenon can be perceived at
point C with vehicles that were on turn lane, although it is
less scaled because the number of vehicles is smaller and the
traffic light time is also shorter. The worst case scenario can be
found, looking at Figure 4 and at the evolution of the error in
space, at larger distances from the RSU where higher speeds
are found.

This shows that beaconing frequency and communication
parameters should be adapted to the dynamics of the vehicles,
mainly because stopped vehicles near the RSU saturate the
channel with redundant information that does not improve the
accuracy, raise the probability of a collision and are the least
likely to contribute to an accident.

B. Influence of packet losses

On the other hand, the error grows similar to the evolution
of the number of vehicles but attenuated by the decrease in the
average speed when congestion occurs. There are collisions in
almost all instants of time due to the periodic transmission
of beacons. Losses due to attenuation of the channel are
negligible compared to those due to collisions. Figure 6
shows the number of packets dropped at the physical layer:
considered as noise due to low SNR, discarded as collision due
to low SINR during preamble reception or discarded due to bit
errors caused by low SINR at some point during the reception.
The problem worsens as the number of vehicles increases
coinciding in t = 160 s the greatest number of collisions
with the maximum number of vehicles. This translates to a
low PDR near 30%, Figure 7, which roughly corresponds to a
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Fig. 5. Impact of shadowing dynamics on the average CBR.
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Fig. 6. Average number of packets dropped across time. The number of
packets dropped due to SNR is multiplied by 10 to increase its visibility.

70% chance of a collision. Therefore, high density traffic infer
a high collision probability between transmissions arising the
well-known scalability problem of the IEEE 802.11p MAC
protocol which precisely congestion control protocols try to
avoid [2]. Besides, the high number of vehicles also increases
the effect of radio signal shadowing dynamics increasing the
probability that some packets are not received due to a low
SNR but, more importantly, increasing the problem of the
hidden node during which the collision avoidance mechanism
of CSMA is not involved. Thanks to the shadowing of the
vehicles the range of distance at which another vehicle is
sensed is diminished and is more likely that two hidden nodes
try to transmit at the same time generating a collision. Another
thing that can be seen in Figure 6 is that when vehicles stop
appearing (t = 160 s) packet losses due to SNR follow the
same pattern as the speed. This is not due to the speed but to
the distance in which the cars are located because it coincides
that they have the highest speed at further distances from the
RSU.

The hidden node and collisions problem can also be seen
looking at the evolution of the Channel Busy Ratio (CBR)
over time in Figure 5. The CBR is computed at the RSU as
the amount of time that the channel is sensed as busy during a
second. The theoretical CBR limit in CSMA/CA without any
collision can be computed as the total number of beacons that
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deviation and divided by 400 to fit the figure).

can be fitted in a second, Nl, multiplied by the duration of a
beacon transmission, tp. In addition, Nl can be deduced as the
inverse of the packet duration plus the predetermined listening
period (AIFS) like:

Nl =
1

AIFS + tp
(4)

where tp can be expressed as the duration of L bytes trans-
mitted at a data rate R plus the duration of the predetermined
802.11p PHY header (th = 40 ms) [21]:

tp = th +
8L

R
. (5)

Substituting first in (5) and then in (4) the values mentioned
in Table II and multiplying by tp leads to a CBR limit of
0.8. However, as shown in Figure 5, the CBR is close to 0.9
exceeding the threshold of 0.8 mainly due to the shadowing
introduced by the vehicle dynamics. This result indicates
that the behavior of the medium access protocol CSMA/CA
converges to an ALOHA process where a node chooses a
random transmission time without sensing the medium. This
finding is aligned with the work in [2], which mentions that
to obtain a 90% ALOHA one needs near 400 vehicles within
the carrier sensing range of a node. So, at these densities, the
network tends to behave like an ALOHA protocol even though
a back-off mechanism is in place.

In conclusion, periodic beaconing increase transmission
collisions resulting in catastrophic position accuracies. In fact,
position error is not improved when the CBR is below or
near to 0.6, which [22] states that this is the CBR value that
maximizes the throughput or number of successful messages
exchanged per second. Therefore, this indicates that congestion
control protocols are not suitable alone. Furthermore, adapta-
tion of power transmission is needed to overcome shadowing
effects that exacerbate the hidden node problem and to avoid
the capturing effect, because vehicles near the RSU with slow
speeds interfere with vehicles far away with larger speed and
prone to larger errors. Finally, at application layer level, one
way to overcome channel losses would be to adopt a trajectory
predictor at the receiver to minimize the uncertainty between
beacons.

TABLE III
STATES AND PARAMETERS OF THE ETSI DCC STATE MACHINE

State CBR
T

[ms]
Pt

[dBm]
R

[Mbps]
CCAth

[dBm]

Relaxed < 0.3 100 33 3 -95
Active1 0.3− 0.4 200 23 6 -85
Active2 0.4− 0.5 300 23 6 -85
Active3 0.5− 0.6 400 23 6 -85
Restrictive > 0.6 500 13 12 -65

IV. CONSIDERED PROTOCOLS

We considered four relevant state-of-the-art beaconing pro-
tocols (for specific details the reader is referred to [22],
[23], [26], [1], [9] and [17]). All protocols were adapted to
the specific scenario conditions and to the following safety
application requirements: maximum frequency of 10 beacons
per second, a target latency of 100 ms and 0.5 m tracking
accuracy [1] [24] [25]. All parameters were adapted following
the guidelines provided by the corresponding authors. Default
values of Table II were adopted for parameters not considered
by the protocols.

A. LIMERIC [22] + PULSAR [23]

Beacon frequency is linearly adapted following the
LIMERIC protocol in combination with CBR information ex-
change provided by PULSAR, such that all vehicles converge
to the same beacon rate and to a desired channel load level
CBRmax = 0.6. As the vehicle number is not constant,
we implemented the gain saturation approach [22] in which
vehicles adapt their frequency linearly as a function of the
previous frequency plus the difference, limited by a threshold
X = 0.005, between CBRmax and the global CBR, that is the
maximum CBR between the one locally sensed and the one
reported by the neighbors during two hops CBR2−hop. The
constant variables of the linear model used are α = 0.1 and
β = 1/150 [22]. The local CBR was computed using a low
pass filter as in [23]. The CBR computing time window was
set to 250 ms, thus the rate adaptation occurs every 750 ms to
account for the information dissemination delay. Finally, we
considered the unsynchronized case, i.e., all vehicles do not
check the CBR at same time.

B. ETSI DCC [16] [26] + CAM [1]

Beacon frequency is adapted to vehicle dynamics follow-
ing the CAM triggering conditions and the packet interval
T GenCam DCC provided by DCC. On the other hand,
transmission power, data rate and the Clear Channel Assess-
ment threshold CCAth are adapted using a state machine with
parameters listed in Table III to react to the global CBR which
is obtained using the PULSAR approach. The state machine
interval check was set to 100 ms and timeUp and timeDown
constants were set to 1 and 5 seconds respectively [5]. All
vehicles are unsynchronized like in the LIMERIC case.
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C. INTERN [9]

Beacon frequency is adapted as Tf = R±∆Tf to achieve
fairness at the application level, i.e., vehicles apply similar
increments ∆Tf to the required beacon frequency R = 10 Hz.
In addition,

∆Tf = ∆TT
f

CBRmax

CBR2−hop
(6)

is dynamically adapted to CBRmax, the maximum CBR
experienced within two hops CBR2−hop and the minimum
∆Tf reported by its neighbors ∆TT

f , both obtained following
the PULSAR approach. Then, frequency is decreased only if
CBR2−hop > CBRmax. We considered minimum and maxi-
mum ∆Tf values of 3 Hz and a 100 ms CBR window time.
Besides, the transmission power is set to the minimum power
level needed to ensure that the demanded beacon frequency
r is guaranteed at the application’s warning distance dw
[9]. Under this scenario, the application requirement aims to
provide accurate position information to the RSU at distances
from 0 to 500 m. Thus, the transmission power is adapted like

Pt[mW ] = 4.932 e(0.012 dw), (7)

as the minimal power that ensures a mean PDR of 0.99 with
a standard deviation of 0.01 for the aforementioned distances
plus a compensation for the reduced PDR resulting from
the channel congestion [9], following an exponential function
obtained experimentally using a regression model because no
analytical model fitted the scenario.

D. TPM [27] [17]

Beacon frequency is adapted using data properties involved
in the considered network traffic with the aim of reducing
redundant information transfer while satisfying the accuracy
application’s requirement. The simplest approach of this pro-
tocol applied to a V2I scenario was used [17]. A beacon
is sent when the comparison between the predicted position
using a constant velocity model and the actual position known
by the vehicle, i.e., the position error, exceeds a user-defined
threshold δth = 0.5 m. Accordingly, on the RSU’s side runs
the same prediction model for every vehicle on the scenario.
The position error interval check was set to 10 ms.

V. PERFORMANCE EVALUATION

The performance of Section IV protocols was evaluated
using Veins 4.6 and SUMO 0.29 on the scenario and parame-
ters described in Section II and IV. All results shown in this
paper were averaged over 10 simulation runs and the fix-period
beaconing of Section III was considered as the Baseline.

The following metrics were taken into account (max and
min in Table IV are the maximum and minimum values seen
by the RSU):
• Position Errors (defined in Section III) are computed and

averaged at the RSU for each vehicle every 10 ms. The
mean of the position error is calculated averaging all time
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Fig. 8. Average spatial distribution of the position error.
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Fig. 9. Average position error across time.

instants and σe in Table IV is computed as the mean of
the standard deviations of every time instants.

• PDR is computed as the ratio between the number of
packets received and sent within 1 second windows for
every vehicle. The mean and σp in Table IV are calculated
averaging all time instants for all vehicles.

• Channel Footprint is defined as the total channel re-
sources consumed at the RSU in time and space, i.e. the
integral of CBR from 0 to 600 seconds [8] [28]. max
value is the maximum value of CBR experienced at the
RSU.

Figure 8 should be taken into account at the time of
implementing an application based on a RSU which needs
position information of vehicles approaching the intersection.
TPM could support applications that require in average high
scale accuracies up to distances from 500 m while ETSI up
to 150 m, LIMERIC up to 100 m and Baseline and INTERN
near 50 m. Regarding medium accuracies: Baseline and IN-
TERN would comply with the requirement up to distances of
approximately 80 m, LIMERIC up to 210 m and ETSI up
to 500 m. On the low accuracy requirements, Baseline would
meet the requirement within distances between 0 and 240 m,
INTERN up to 250 m and LIMERIC up to 490 m.

Figure 9 shows the average position errors across time
where it is clearly seen the congestion adaptation effect on
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TABLE IV
STATISTICAL PERFORMANCE OF PROTOCOLS IN TERMS OF POSITION ERROR, PACKET DELIVERY RATIO AND CHANNEL FOOTPRINT OVER TIME.

Baseline LIMERIC+PULSAR ETSI DCC+CAM INTERN TPM

Position Error [m]
mean 7.01 2.88 1.02 6.83 0.26
σe 28.09 12.97 1.99 23.24 1.62
max 566 546.1 227.6 511.9 139.3

Packet Delivery Ratio
mean 0.72 0.69 0.95 0.67 0.997
σp 0.21 0.17 0.11 0.26 0.03
min 0.1 0.1 0.13 0.1 0.33

Channel Footprint
mean 0.52 0.48 0.25 0.49 0.03
σf 0.031 0.031 0.009 0.01 0.004
max 0.9 0.82 0.49 0.86 0.09

TABLE V
REQUIRED POSITION ACCURACY FOR ITS APPLICATIONS GROUPED INTO
LOW (10-30 m), MEDIUM (1-5 m), AND HIGH (0.5-1 m) SCALES [14].

Technique
Position Accuracy

Low Medium High

Routing x
Data Dissemination x
Map Localization x
Coop. Cruise Control x
Coop. Intersection Safety x
Blind Crossing x
Platooning x
Coll. Warning System x
Vision Enhancement x
Automatic Parking x
Autonomous Vehicle x

the error. Speaking about LIMERIC, ETSI and INTERN,
the error decreases drastically as the frequency is adapted to
the saturated channel. Nevertheless, the error keeps following
the same pattern as vehicle dynamics because there is no
adaptation in reference to this term. Also Figure 9 shows
that the error grows once the traffic density decreases. This
is due to the fact that the reaction time of the protocol is
slow compared to the dynamics of the scenario and because
the criteria used for adaptation is no longer optimal since
in these time instants the error component due to dynamics
is more relevant (channel is less congested). Regarding the
application requirements, most of the time the position error
is maintained within the medium accuracy. Contrary, TPM on
average always stays within high accuracy.

Now, considering an average vehicle width of about 2 m an
overall accuracy of 1 m is needed in order to locate a vehicle
in a particular driving lane. Therefore, taking a look at values
from Table IV it can be deduced that maximum errors and
standard deviations are too large to consider implementing a
critical safety application relying on the information propor-
tioned only by these protocols at the RSU.

LIMERIC and INTERN protocols rely on the fairness pos-
tulation and therefore their adaptation is mainly conditioned by
other vehicles. LIMERIC aims to achieve a target CBR while

INTERN aims to achieve a desired frequency under the target
CBR but vehicle dynamics are neglected. LIMERIC linear
parameters, which define the convergence stability, speed and
time, were set to constant values but the protocol performance
would be improved if those were dynamically adapted to
the number of vehicles because of the fast varying density
traffic of the scenario. Also keep in mind that it does not use
any power adaptation. INTERN’s error pattern is similar to
the baseline as its adaptation focus on achieving the desired
frequency adapted to: (i) CBR measures which are not accurate
enough due to shadowing dynamics and (ii) strongly to the
minimum frequency increment reported by neighbors (see (6))
which equals to 0 for vehicles measuring CBR levels below
CBRmax and close to the desired frequency. Note that in the
scenario the desired frequency is the same for all vehicles
to meet the 100 ms latency which in turn is the same as the
baseline and the maximum allowed by ETSI. INTERN’s power
adaptation implies that distant vehicles transmit with greater
power, however, it is not optimal since it also implies similar
signal strength of packets received at the RSU, which in case
of interference none can be received correctly because of poor
SINR values.

ETSI’s protocol not only relies on the channel load to
adapt the beacon frequency. In fact, the periodic component
of the beacon frequency is adapted to the channel load but the
other frequency component is derived from vehicles dynamics
(CAM triggering conditions). Thus, as the channel becomes
more saturated, the protocol decreases the beacon frequency
and the later component acquire more relevance improving the
position accuracy. As said in Section III, vehicle dynamics
are a key component in the position accuracy and, because
of this, protocols aiming to adapt the beacon frequency to
dynamics achieve a better position accuracy. This can be seen
looking at the TPM performance. TPM focuses on adapting the
beacon frequency only to vehicle dynamics and reducing the
maximum redundant information from the channel. Therefore,
it achieves the best position accuracy, a reduced channel
load and almost near maximal PDR values (Table V). In
turn, these also leads to better opportunities to succeed for
other kinds of messages like Decentralized Environmental
Notification Messages (DENM). However, as TPM does not
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use any mechanism to overcome channel losses, if a packet
is lost the next packet will be sent when the predictor error
exceeds the threshold. This derives in large values of maxi-
mum error and standard deviation which do not cope with high
accuracy position requirements of the critical applications. In
addition, another drawback of TPM —although this problem is
alleviated as the RSU is the one regulating the intersection—
could be that new vehicles appearing inside the RSU range do
not receive updated information about vehicles that already
sent their beacon and that their model is predicting correctly.

VI. CONCLUSIONS & FUTURE WORK

We presented a critical analysis on the performance of four
state-of-the-art protocols derived first from a semi-analytic
study of the position error behavior through an RSU-based
application’s point of view. Their performance was evaluated
and compared with three different accuracy scales required
by vehicular applications. It was deduced that congestion
control controls perform well with respect to the channel
capacity management and that translates into an increase in
the accuracy of the position. However, it became clear that
these protocols do not guarantee that the information is sent
when needed as the position accuracy is strongly influenced by
vehicle dynamics. Neither of them account directly for the hid-
den node problem and the capturing effect which are of high
relevance in the considered scenario and needs to be addressed
to achieve low uncertainty. Also, it was seen that adaptation of
power transmission is needed to overcome shadowing effects
which awareness control protocols partially solve while trying
to meet the application requirements. Finally, it was concluded
that communication parameters need to be adapted to the
dynamics of the vehicles and to application requirements if
high accuracy and reliable awareness is needed.

Future work will propose an enhanced protocol considering
the analysis and results obtained and presented in this paper.
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