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Abstract—The current high gain frequency division duplex
(FDD) Massive multiple-input, multiple-output (MIMO) systems
pose several challenges to carry out the downlink beamforming.
Specifically, downlink beamforming requires a channel estimation
that usually needs long training and feedback overhead, scaling
with the number of antennas at the base station (BS). We exploit
compressive sensing (CS) techniques to accurately estimate the
channel, while assuring overhead reduction which is proportional
to the sparsity level of the channel. The sparse virtual channel
representation is obtained through the proposed dictionary de-
sign, which is more flexible, robust and able to estimate the
cell characteristics. We specifically focus on massive MIMO-
Orthogonal Frequency-Division Multiplexing (OFDM) systems
that show more robustness to multipath fading, and analyze sev-
eral CS algorithms to select among them the best technique with
the proposed dictionary design. Numerical results demonstrate
that greedy solutions approach the basic pursuit bound with
lower complexity and consequent shorter training period. The
normalized hard thresholding pursuit (NHTP) technique is the
greedy algorithm with the best performance complexity trade-off.

I. INTRODUCTION

Next-generation massive multiple-input multiple-output
(MIMO) systems allow fine beamforming with narrow beams,
thanks to the large number of antennas at the base station (BS)
[1] [2]. This turns out in interference avoidance among users
and higher throughput compared to current architectures.

However, to achieve effective downlink beamforming, pre-
cise channel state information (CSI) is required. In time-
division duplexing (TDD) systems, CSI can be estimated
exploiting channel reciprocity [3]. Specifically, the uplink
channel information, obtained easily due to the low number of
antennas at the mobile station, can be exploited for downlink
beamforming.

On the contrary, frequency-division duplexing (FDD) ar-
chitectures do not allow the use of channel reciprocity since
different frequency bands are used for uplink and downlink
with consequent different channels. Since FDD systems are
more suitable for delay-sensitive and symmetric traffic sys-
tems, new solutions for dowlink training overhead reduction
are needed. On this purpose, the compressive sensing (CS)
framework can be exploited to reduce the downlink training

period, by sparsely representing the channel response with
some dictionary or basis.

The discrete Fourier transform (DFT) matrix has been
already employed to represent the channel in a sparse manner
[4] [5]. However, such representation is not valid for all the
antenna geometries, but only for uniform linear array (ULA)
with a sufficient number of antennas and limited scattering,
which reduces its real feasibility.

New dictionary based virtual channel model have been
proposed to sparsely represent the channel, which are able
to adjust to the cell characteristics, with no restriction to
the array geometry. We exploit dictionary for sparse channel
model and, once sparse channel representation is obtained, we
apply compressive sensing techniques for channel estimation
with a reduced dowlink training period.

We specifically focus on MIMO-orthogonal frequency di-
vision multiplexing (OFDM) systems. In order to mitigate
the frequency selective fading, OFDM is used along with
MIMO effectively converting it into flat fading channel. Each
subcarrier is transmitted over a narrow band hence simplifying
equalizer design at the receiver. We compare different com-
pressive sensing techniques, i. e., convex optimization based
approaches (basic pursuit (BP)) and greedy methods (matching
pursuit (MP)). Among the greedy algorithms, we employ the
well known orthogonal matching pursuit (OMP), as well as
the iterative hard thresholding (IHT) and the normalized hard
thresholding pursuit (NHTP) methods.

The main contributions of this work are:

1) a compressive sensing based solution is proposed for
channel estimation in massive MIMO-OFDM FDD sys-
tems with reduced downlink training overhead;

2) we implement different CS algorithms and choose the
optimal one with the proposed dictionary, while [3] only
demonstrates the usefulness and potential of dictionary
learning based channel modeling applied to an OMP
CS solution, without analyzing the problem of optimal
CS algorithm selection for massive-MIMO using learned
dictionary;

3) a comparison of DFT basis and proposed dictionary is
presented varying the pilot spacing, which shows that
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proposed dictionary based compressed sensing is more
robust and reliable even when increasing pilot spacing.

4) simulation results show that the basic pursuit gives
the best performance at the cost of high complexity.
Greedy solutions approach the basic pursuit bound with
a lower complexity and consequent shorter training
period. Specifically, the NHTP approach is the greedy
algorithm with the best performance complexity trade-
off.

The paper is organized as follows: Sec. II-A describes sparse
channel estimation, while Sec. III the compressive sensing
methods. Sec. IV shows some interesting simulations results,
and, finally, some concluding remarks wrap up and close the
paper in Sec. V.

II. SYSTEM MODEL

Wireless channel involves multiple paths of varing delays
and gains. The transmission at high data rates generally
implies a small symbol duration, so that the received signal
is affected by intersymbol interference (ISI) of successive
modulation symbols, due to several paths in the propagation
environment. A time varying channel with Lt paths can there-
fore be represented as

h(t) =
Lt−1

∑
k=0

αkδ (t − τk) (1)

Where τk and αk denote the kth channel path delay and com-
plex gain respectively. In order to combat multipath fading,
the well known multicarrier scheme OFDM may be used, by
employing narrow spaced subcarriers at the transmit side. An
OFDM signal consists of No subcarriers, equally frequency

spaced at ∆ f =
1

Ts

, with Ts the sampling time. An OFDM

discrete time baseband signal can be expressed as

Si(n) =
1√
No

No−1

∑
k=0

xi(k)e
j
2πkn

No (2)

where Si(n) represents the nth sample of the ith OFDM symbol,
and xi(k) represents the data transmitted over the kth subcarrier

in the ith symbol interval, while
1√
No

is a normalization

factor. The kth subcarrier in the equivalent lowpass domain
is described by the signal gk(t) as

gk(t) = e j2π∆ f kt · rect(
t

Ts

) (3)

Despite the fact that these subcarriers overlap each other, they
do not interfere since they are orthogonal. The maximum chan-
nel delay τmax = τLt−1 may cause intercarrier interference (ICI)
which is usually mitigated by appending a cyclic extension
of each OFDM symbol at its end, for a number of samples
Gi ≥ τmax, i.e. the guard interval. Therefore, the OFDM total
symbol duration is Tsym = (No + Gi) · Ts A perfect channel
knowledge is a fundamental requirement for channel equaliza-
tion. The channel may be usually estimated by blind or pilot
based techniques. In OFDM pilot based channel estimation,
pilots are arranged in a time frequency grid over time (block
based) or frequency (combo based). The receiver can directly

estimate channel behavior at the frequencies where pilots are
transmitted using conventional least square based technique

Hi,k =
Ri,k

Si,k
(4)

Where Si,k is kth position of ith OFDM symbol transmitted and

Ri,k is kth position of ith OFDM symbol received. Recently,
research has been focused on exploiting communication chan-
nel sparsity, considering the fact that channel exhibit only few
dominant propagation paths which may be approximated as a
linear combination over a known basis or dictionary, resulting
in a sparse Channel impulse response (CIR). Traditionally
DFT basis are used for sparse channel representation.

φ =











e− j2πk0,1 . . . e− j2πk0,No−1

e− j2πk1,1 . . . e− j2πk1,No−1

...
. . .

e− j2πkNo−1,1 . . . e− j2πkNo−1,No−1











The use of the DFT base is compliant with the theoretical
results of signals estimation in CS [6], and it has been used
to represent sparse channel models. However, DFT basis may
represent the channel only in a few, although orthogonal,
directions. In order to better estimate the channel, more
robust and refined basis may be defined.

A. Sparse Channel Estimation

In this work, we will focus on a downlink massive MIMO-
OFDM system, with a number of transmit antennas equal to
N, and a single antenna at the receiver. Multicarrier OFDM
modulation is used in order to mitigate frequency selective
fading and aid channel estimation by means of pilot subcar-
riers. Data frames are represented by d j with j = 1, ...,N −L,
while the number of training pilots is L.

x = {P1,d1,P2,d2, ...,PL, ...,dN−L} (5)

Pilots P are built according to a Rademacher distribution
(RD), comprising equally likely symbols belonging to [+1,-1]
and multiplied by a phase rotation as in the following equation.

P = [p1e− jπl1 ,p2e− jπl2 , ...,pLe− jπlL ] (6)

where l j are uniformly distributed random numbers belonging
to the interval [0,1] , while the channel delay profile can be
formulated using OFDM sample time and guard interval for
each dictionary point as follows

τh = [0,α,2α, · · · · · ·(M−1)α] (7)

where M is the dictionary length and α = Gi ·Ts−Gi ·Ts/M is
the minimum channel spacing which is calculated by consider-
ing the constraint that τmax must not exceed Gi. The downlink
channel vector h∈C

N×1 is estimated at the mobile receiver by
using pilot symbols, and this channel state information is sent
back to the base station [3]. In more details, the transmitted
pilot symbols may be represented by the matrix A∈C

LxNo , for
DFT based sensing matrix and A ∈C

LxM for dictionary based
sensing matrix. Block based pilot arrangement is used as it is
most suitable for multipath fading channel. For example, for
No equals to 2048, 32 pilots are transmitted per OFDM symbol
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with pilot interval (PI) equal to 64, while the remaining 2016
sub carriers are used for data. After the OFDM DFT matrix
multiplication, the received signal at each single user can be
expressed as in the following:

y = Ah+n (8)

where the elements of n ∈ C
Lx1 are additive white Gaussian

Noise (AWGN) samples with variance σ2
n = N0/2. Least

square (LS) channel estimation requires a number of pilot
symbols L ≥ N, needed to compute the pseudoinverse of
the pilot matrix A. For massive MIMO the large number of
Antennas N can make this unfeasible, considering also that
the estimated channel information shall be sent back to the
base station.

B. Sparse Channel Representation

If L < N the compressed sensing paradigm may be taken
under consideration, since channel estimation may be viewed
as measuring a high dimensional signal with a very limited
number of measurements, assuming that the original signal,
i.e. the channel estimate h, may be sparse in a some suitable
basis.
In order to construct the dictionary D basis, we are only
considering the useful OFDM symbol duration, without Gi,
and taking the channel delay profile into account

D =











e− j2π·1τ1 e− j2π·1τ2 · · · e− j2π·1τM

e− j2π·2τ1 e− j2π·2τ2 · · · e− j2π·2τM

... . . .
e− j2π·Noτ1 e− j2π·Noτ2 · · · e− j2π·NoτM











where τ(m) = 1/Tsym · τh(m) where m = {0,1, · · · ,M − 1}
Following this reasoning, to effectively represent channel

sparsity, if the basis D ∈ C
M×No may be redefined such that

D = DLxM is a sub-matrix of D, we can then write

y = Ah+n = D ·Pβ +n (9)

where β ∈ C
L×1 is a representation compressed vector, and

y ∈ C
M×1 the estimated one. The design of dictionary D and

sensing matrix A is always critical when using compressed
sensing. It can be seen that D ∈ C

NoxM , and A ∈ C
LxM is

basically consisting of some specific rows of D related to pilot
locations as in [7]:

A =











e− j2πl1τ1 · · · e− j2π·l1τM

e− j2πl2τ1 · · · e− j2π·l1τM

...
. . .

e− j2πlLτ1 · · · e− j2π·lLτM





















[p1e− jπl1

p2e− jπl2

...

pLe− jπlL ]











(10)

For comparison purposes, the sensing matrix A with dft basis
φ is computed in a similar manner from D, i.e. only some
specific rows of the basis function related to the training
subcarriers are considered:

Aφ =











e
− j2πkl1 ,1 . . . e

− j2πkl1 ,No

e
− j2πkl2 ,1 . . . e

− j2πkl1 ,No

...
. . .

e
− j2πklL ,1 . . . e

− j2πklL ,No





















[p1e− jπl1

p2e− jπl2

...

pLe− jπlL ]











(11)

The equivalent channel representation in (9) is sparse if
||β ||0 = s ≪ N. Further, if we are able to solve for compressed
vector β , then the channel estimate can be obtained. Addition-
ally, sparse signal reconstruction is based on the assumption
that h is a s-sparse CIR, i.e. its channel energy is uniformly
distributed among few dominant taps. The exact position of
these dominant taps is not a priori known, and it must be
estimated for effective channel sensing [7].
Sensing matrix A can be represented in the form of a DFT
basis φ ∈ CNo×No or in the form of an overcomplete dictionary
D ∈ CNo×M , to solve a channel estimation problem with
M > No.
The main objective of any dictionary is to sparsely represent
data in terms of some basic elements, called atoms, that are
not required to be orthogonal and they may be seen as an
over-complete spanning set. The basic philosophy of these
algorithms is that a dictionary may be inferred from input
data, inspired by the fact that we need to represent each data
set by using as few samples as possible.
To solve the sparse channel estimation problem, each iteration
alternatively minimizes the CS error with respect to either
D or β , while keeping the other fixed [3]. The algorithm
convergence depends on the specific sparse recovery and
dictionary update algorithms. Our work aims to optimize
β , starting from an overcomplete dictionary representation.
Finally, a channel estimate is built at all location merely from
dictionary x̂ = Dy.

III. COMPRESSIVE SENSING METHODS

We apply different CS algorithms to the proposed dictionary
based sparse channel representation, in order to select the best
CS solution able to reconstruct the estimated channel from few
measurements. CS methods can be categorized broadly into
convex relaxation iterative algorithms [8], [6], and greedy ones
[9], [10]. Other methods have been proposed as a combination
of these techniques [11], [12], [13].

A. Convex relaxation iterative algorithms

The convex relaxation type exploits linear programming
to solve undetermined systems. Some convex techniques are
formulated as L0, L1, and L2 norm minimizations. In the
following, we denote with x the estimated channel response ĥ.
Considering the basic pursuit algorithm, the solution of a L1

norm minimization can be formulated as a cost function min-
imization problem. BS is an iterative algorithm that initializes
the first guest (x = x0 = AT y), which represents the minimal
signal energy, and then computes the cost function by mini-
mizing ‖y−Ax0‖2. For the next i iterations, the measurement
matrix is calculated selecting the s required measurements, and
the signal coefficients are adjusted according to the minimized
form. The iterations stop when enough signal coefficients are
obtained, less than its sparsity level [14].

Convex relaxation methods needs only a small number of
measurements to reconstruct the signal; anyway, they exhibit
a greater complexity in terms of computation and time con-
suming [14].

B. Greedy algorithms

Differently from the convex relaxation algorithms, greedy
techniques are easy to implement and able to quickly recover a
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sparse signal, although their solution is not optimal [14]. Such
methods are in line with our objective to reduce the downlink
training overhead for channel estimation, however we should
also strictly take into account their performance.

Let us call x the large dimensional signal, that is the channel
to be estimated in our case, with a high number M of samples,
which is sparse in some domain. Greedy algorithms pick one
position of a non-zero element of x, which corresponds to
select one column from the measurement matrix.

Some techniques have been proposed under this category:
orthogonal matching pursuit (OMP) [15], compressive sam-
pling matching pursuit (CoSaMP) [12], iterative hard thresh-
olding (IHT) [16], and normalized hard thresholding pur-
suit(NHTP) [17]. Matching pursuit selects a column from the
measurement matrix that maximizes the inner product of the
current residuals. As a first step, the algorithm selects from the
dictionary the vector corresponding to the longest projection
of x. In the second step, the signal x is orthogonalized by
removing any element of the selected vector from x in order
to obtain its residual with the lowest energy. Finally, such
two steps are iteratively processed for the remaining part
of the dictionary until the residual norm is lower than a
certain threshold [14]. Orthogonal matching pursuit method
is a variant of the matching pursuit algorithm by discharging
both the elements of the selected vector from x, and from the
basis, before doing again the process. Orthogonal matching
pursuit shows better results than matching pursuit, at the cost
of a higher computational complexity.

Given the high-dimensional signal x, observed via low-
dimensional measurements y, the aim is to reconstruct the
signal from the measurements. Iterative Hard Thresholding
(IHT) is built on the insights of [18]:

• solving the rectangular system Ax = y is equivalent to
solve the square system A ·Ax = A ·y;

• a sequence xi can be defined as a recursion xi+1 = (I−
A ·A)xi;

• given the objective of sparse vectors, each step includes
the hard thresholding operator that keeps s nonzero largest
components of a vector and fixes the other ones to zero.

Compressive Sampling Matching Pursuit algorithm pursues
first a suitable candidate for the support, and then finds the
vector, with this support, that fits well the measurements [18].

The Hard Threshold Pursuit (HTP) algorithm is a com-
bination of the ITH and the CoSaMP or Subspace Pursuit
algorithms [18], so that it selects the s largest component of
xi+A ·A(x−xi)≈ x. The HTP main feature is its high speed.

Finally, Normalized Hard Thresholding Pursuit is a variant
of the HTP method.

IV. PERFORMANCE EVALUATION

In this section, the performance of the proposed scheme are
evaluated for different CS techniques.

A. Simulation Setup

We consider a MIMO-OFDM system, with 100 transmit
antennas and one receive one. The base station uses 256
OFDM subcarriers for downlink transmission. Some subcarri-
ers are employed for pilot sequences and others for data. The
multipath channel length Ltaps is equal to 6, whose consequent
interference is directly solved by the OFDM guard interval,

TABLE I
SIMULATION PARAMETERS

Parameter Symbol Value

Transmit antennas N 100

Receive antennas R 1

OFDM subcarriers No 256

OFDM guard interval Gi 16

QAM Modulations QAM 32

Multipath channel length Lt 6

  0.2
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  0.6
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330

180 0

Fig. 1. Analysis of angles of dictionary basis 16x20

whose length is set equal to 16. Table I summarizes the system
parameters.

B. Performance Analysis

Wireless channel in the angular domain can be represented
by sparse DFT basis as reported in [7], [19]. Although DFT
basis are orthonormal, only a few angles or directions may be
defined in it. In practical systems, signals may arrive from any
arbitrary directions, so predefined patterns of dft bins do not
represent a good choice [3]. On the contrary, in the proposed
solution, a dictionary with more refined bins is used in order to
estimate the sparse channel model. In Fig. 1 and 2, the angular
representation of DFT and Dictionary basis are shown, for a
No ×No DFT matrix and a No ×M dictionary one. If No = M

the dictionary is defined as complete, while when M > No the
dictionary is said over-complete, providing more redundant
basis which is more flexible to estimate the channel.

The effects of Different pilot spacing and sparsity levels
on on system performance are analyzed. In massive MIMO,
pilot training overhead is one of the main concern, since it is
proportional to the number of transmit antennas, in order to
acquire good CSI at the base station.

In Fig. 3, we analyze the effects of the OMP algorithm
on BER for the following different values of the sparsity level
s= 15, 30, 45, 60, 65. We also observe the system performance
for pilot interval (PI) values equal to 4, 14. Similar analysis
can be also conducted for the other CS techniques. Fig. 3
shows that the proposed dictionary performs better than the
DFT based one, and it is more robust to pilot spacing changes.
Indeed, when PI = 14, the DFT basis performance behaves
worse than PI = 4, while the dictionary based algorithm almost
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Fig. 2. Analysis of angles of dft basis 16x16
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Fig. 3. Analysis of DFT basis and proposed dictionary with different sparsity
levels s and pilot spacing for OMP algorithm

maintains the same performance. Further, when the sparsity
level s is increasing, all the channel measurements are more
accurately represented, indeed the bit error rate is decreasing.

Although there is a huge list of compressed sensing al-
gorithms, having different benefits and drawbacks that are
suitable for different systems/models, and with distinct conver-
gence and complexity constraints, in the following figures we
focus on some prominent greedy CS techniques, i. e., OMP,
CoSaMP, IHT, NHTP with dictionary, compared to convex
optimization based basic pursuit algorithms.

Fig. 4 illustrates the performance of CS algorithms with the
proposed dictionary, showing that the basic pursuit method
outperforms all the considered greedy algorithms in terms
of BER, while the least square estimation (LSE) approach
gives the worst performance. However, the curve of the greedy
NHTP is really close the BP one, with the advantage of high
computational complexity reduction. Indeed, there is a trade-
off between performance and computational complexity that
we need to take into account, as shown in Sec. IV-C.

Finally, in Fig. 5 we analyze the effect of multipath channel
for the NHTP with the proposed dictionary by varying the

-5 0 5 10 15 20 25 30

SNR

10
-4

10
-3

10
-2

10
-1

B
E

R

OMP

BP

IHT

CoSaMP

HTP

LSE

Fig. 4. Performance of CS techniques with dictionary basis: BER vs SNR
(dB) for transmit antennas N = 100, receive antenna R= 1, number of channel
taps Lt = 6
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SNR
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-3

10
-2

10
-1

B
E

R

 L=4

 L=8

 L=12

 L=20

Fig. 5. BER vs SNR (dB) for NHTP algorithm with dictionary changing the
number of channel taps

number of channel taps. We focus only on this algorithm since
it is the best choice in terms of performance complexity trade
off, as detailed in the following.

Pilot overhead reduction has been compared among dif-
ferent compressed sensing based algorithms including con-
vex optimization based BP and other greedy algorithms. It
has been observed that the performance curve rapidly move
down with decreasing pilot interval. The previous work [19]
investigated pilot overhead reduction using CS based algorithm
by random pilot allocation at different subcarriers for each
antenna. They have used random sending matrix with DFT
basis for sparse channel representation. In this section, we have
assumed the same parameter setting for comparison purposes:
transmit antennas = 128, number of subcarriers = 2048, SNR
equal to 20 dB, 10 percent pilots overhead, and MSE equal to
-25 db. As shown in figure 6, the proposed dictionary based
algorithm exhibits better performance with pilot overhead less
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Fig. 6. Percentage pilot overhead

TABLE II
COMPUTATIONAL COMPLEXITY

BP OMP CoSaMP IHT NHTP

O(n3) O(s m n) O(m n) O(m n) O(m n)

than 5 percent at -30 db MSE.

C. Complexity Analysis

Tables II and Fig. 7 refer to the computational complexity
and the required simulation time, respectively.

Considering Fig. 4, 7 and Table II, the greedy orthogonal
matching pursuit and normalized hard thresholding pursuit
show the best performance trade off in terms of BER and
computational complexity/simulation time. Note that, although
OMP shows the lowest simulation time in Fig. 7, the NHTP
BER performance in Fig. 4 greatly outperforms the OMP one,
with a 2.5 dB gain at 10−3 BER. All the simulations are
performed on an intel core i5 (7th Generation) architecture.

20 40 60 80 100 120 140

Tx Antenna
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10
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1

T
im

e
(s

)

BP

IHT

OMP

HTP

CoSamp

Fig. 7. Simulation time in seconds for CS techniques with dictionary

V. CONCLUSION

We have proposed a CS based channel estimation with
a suitable dictionary for downlink beamforming in massive
MIMO-OFDM FDD systems. We have exploited CS tech-
niques to reduce training overhead, that is proportional to the
sparsity level of the channel. The sparse channel representation
is obtained through a proposed dictionary able to self-adapt
to the cell characteristics. We have analyzed several CS
algorithms in order to select among them the best technique
with respect to the proposed dictionary. Numerical results
demonstrate that basic pursuit shows the best performance
at the cost of a higher complexity, while greedy solutions
give good results with a lower complexity and hence shorter
training period. Among them, the NHTP approach is the
greedy algorithm with the best performance complexity trade-
off.
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