
OpenVLC1.2: Achieving Higher Throughput in
Low-End Visible Light Communication Networks

Ander Galisteo†‡ Diego Juara† Qing Wang[Domenico Giustiniano†
†IMDEA Networks Institute, Madrid, Spain
‡Universidad Carlos III de Madrid, Spain

[KU Leuven, Leuven, Belgium

Abstract—In this paper, we introduce the OpenVLC1.2 re-
search platform for low-end visible light communication (VLC)
networks. The platform builds on top of previous versions that
has attracted dozens of users from the VLC research community.
We maintain its main advantages such as the support for commu-
nication with TCP/IP layers, software-based and programmable
MAC and PHY layers and low-cost front-end. In this new version,
we make an effort to increase the network throughput to 100
kb/s, i.e. by a factor of 8 with respect to previous versions,
without adding any hardware cost. This benefit comes from
our exploitation of the Programmable Real-time Units (PRUs)
of the BeagleBone Black board, together with our low-resource
consumption frame detection technique.

I. INTRODUCTION

Visible light is present everywhere and is gaining significant
interest as a medium to connect objects to the Internet.
Visible Light Communication (VLC), enabled by modulating
the LED light, is being investigated by researchers for next-
generation networks [1], [2], V2X communication [3], etc.
VLC has several advantages over RF communication, e.g.
wider bandwidth, use of the same transmission source for both
illumination and communication, low-energy front-end. Most
of VLC research is based on resource-rich platforms, e.g.,
WARP [4], USRP [5], and aims at increasing data rates in iso-
lated cells with point-to-point scenarios. These systems have
cost around $1000s. Recently, a range of applications have
also been developed with low-end VLC platforms: toy-to-toy
communication [6], human sensing [7], mobile interaction [8],
indoor localization [9], [10], and passive VLC [11], [12].
These recent low-end platforms (with prices less than $100 per
transceiver) sit at the opposite extreme of the high-end VLC
systems: trading throughput (kb/s) for cost and simplicity.

To solve the lack of an open-source and flexible platform for
low-end VLC research, we introduced OpenVLC at the VLCS
workshop [13]. It is the first open-source platform for low-end
VLC networks, targeting at applications for the Internet of
Things (IoT). Since its release, the platform has been used in
several research works and made available to the community
through open calls. OpenVLC is now being used in more than
20 research groups worldwide for either research or teaching.

To guarantee the highest flexibility and reconfigurability, we
implemented a minimal set of functionalities in the hardware.
The MAC and PHY layers were mainly implemented in the
software (Linux driver), allowing for quick and flexible testing

of new VLC protocols and applications. However, this solution
limited the throughput to around 12 kb/s (UDP throughput).
There are two challenges that have not been solved by our
previous platforms:
• How to modulate the LED light at a higher speed without

increase in the cost?
• How to demodulate the incoming visible light signals as

fast as possible with a low-end platform?
In this paper, we introduce the new version of our platform,

OpenVLC1.2, that makes an effort to increase the through-
put by addressing the above challenges without adding any
hardware cost to the platform. We also improve its stability
and optimize the platform by including feedback from our
users. Since the platform runs in low-end hardware, we also
design a new technique for computation- and memory-limited
fast frame detection. Through a novel implementation, we can
now modulate the LED light and perform sampling at a rate
of several hundred kHz and achieve a UDP throughput of
above 100 kb/s that could satisfy the needs of a range of IoT
applications with only off-the-shelf low-end hardware.

The rest of this paper is organized as follows. Sec. II
introduces the background on OpenVLC and related hardware,
followed by the new system architecture and design presented
in Sec. III and Sec. IV, respectively. Some preliminary results
are reported in Sec. V. Finally, discussions and conclusion are
drawn in Sec. VI.

II. BACKGROUND

A. Earlier versions of OpenVLC

The previous versions of OpenVLC mainly consisted of
three parts: the BeagleBone Black board [14], cape, and driver.
• BeagleBone Black (BBB): a low-cost embedded platform

(≈55 USD) that runs Linux Operating System, equipped
with a AM335x 1 GHz CPU, two Programmable Real-time
Units (PRUs), and 65 GPIOs for quick prototyping.

• OpenVLC cape: the front-end transceiver that is attached
directly to the BBB. The cape is equipped with one high-
power LED, one low-power LED and one photodiode.

• OpenVLC driver: the implementation of MAC and PHY
layers in Linux kernel. The key primitives are sampling,
symbol detection, coding/decoding, channel contention, car-
rier sensing and Internet protocol interoperability.

2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-02-7 © 2018 IFIP 117

Application layer

Transport layer

Network layer

VLC MAC

VLC PHY

TCA

TIAVLC Firmware

PRU Controller

Kernel Space

User Space

HardwareSoftware
OpenVLC Driver

Fig. 1. The diagram of OpenVLC1.2.

B. PRUs of the BBB

The PRUs are exploited in this work to control the hard-
ware more precisely and faster. A PRU is a fast processor
operating at 200 MHz with 32-bit registers. It has single-cycle
input/output access to a set of BBB pins and peripherals, and
can access the memory shared by the CPU of BBB. The PRUs
are programmed in assembly with a limited set of instructions.
This makes programming them difficult, but allows to have a
tight timing control over the hardware.

III. OPENVLC1.2: NEW SYSTEM ARCHITECTURE

Based on its predecessors, the architecture of OpenVLC1.2
has been redesigned in order to increase the network through-
put. Meanwhile, OpenVLC1.2 maintains the advantages of
being flexible and open-source by supporting the interface
with TCP/IP layers, implementing the software-based and
programmable MAC and PHY layers and being equipped with
a low-cost front-end. It will be also made available to the
research community.

The system architecture of OpenVLC1.2 is shown in Fig. 1.
The hardware (OpenVLC1.2 cape) harnesses the LED and
PD, together with ancillary circuits to transmit and receive
visible light signals, respectively. The software is responsible
for modulating the LED light (while transmitting) or sampling
the incoming signals (while receiving), both implemented in
the OpenVLC1.2 firmware. The software also implements the
MAC and PHY layers in the OpenVLC1.2 driver.

Comparing OpenVLC1.2 to its predecessors, there are four
main differences in the design:
• An advanced OpenVLC cape (hardware).
• A redesigned system architecture (mainly in software).
• A firmware implemented in the PRUs for signal sampling

and data transmission (software).
• A technique for computation- and memory-limited frame

detection (software).

A. Hardware

The new hardware (OpenVLC1.2 cape) is shown in Fig. 2.
Improvements are detailed below.

1) TX circuit: We improve the TX circuit mainly to support
a higher transmission rate and a larger communication range.
• Increase the transmission rate: we use a PRU at the TX

to modulate the LED light at higher speeds. Moreover, a

LED
PD

Fig. 2. The OpenVLC1.2 cape.

TABLE I
FRAME FORMAT

Fields Length (bytes)
Preamble 3 (24 symbols)

SFD 1
Frame length 2
Dst. address 4
Src. address 4

Protocol 2
Payload 0-MAX

CRC 2

MOSFET gate driver transistor that controls the current
flowing to the LED is added to support a faster switch.

• To expand the communication range: a new DC-DC compo-
nent that supports higher power has been introduced. With
it, the front-end can now support up to 2W power LEDs.
2) RX circuit: In the previous versions of the OpenVLC, a

bottleneck was the RX’s sampling rate. In OpenVLC1.2, this
is solved partly by introducing a new faster photodiode (PD).
This PD does not have its own amplifying circuit. Thus, we
add an external amplifier to the RX. The PD’s position in the
cape is also adjusted for a better detection of visible light.

B. Software

To boost the date rate in OpenVLC1.2, we exploit the BBB’s
PRUs to modulate the LED light and sample incoming signals.
Accordingly, we redesign the original software architecture
by disassembling it into three parts: the driver (in the Linux
kernel), the firmware (in the PRUs), and the PRU controller
(in the user space). Time-sensitive operations are implemented
in the PRUs (OpenVLC firmware) that controls the GPIOs to
modulate LED light and performs sampling of incoming sig-
nals. The proposed technique for computation- and memory-
limited frame detection also resides in the firmware (the details
are presented in Sec. IV). The OpenVLC driver implements
the MAC protocol and non-time sensitive PHY operations.
This maintains the advantages of software-based flexibility and
programmability. Communication between the driver and the
firmware is handled by the PRU controller in user space.

C. Data flow

When the MAC layer receives data from the upper layers, it
creates frames to encapsulate the data. Each frame starts with a
frame header that contains the following fields: preamble, Start
Frame Delimiter (SFD), frame length, destination address,
source address, and protocol as shown in Table I.

The preamble consists of 24 alternating HIGH and LOW
symbols. After that, SFD is appended to avoid false positives.
The next field denotes the length of frame in bytes, followed
by the destination and source addresses. The protocol is used
to specify the protocol of the data in payload. Finally, Circular
Redundancy Check (CRC) is used to detect symbol errors.

After encoding the frame in the PHY layer, the bit stream is
sent to the PRU controller in user space who then forwards it
to the firmware in the PRU. The PRU then controls the GPIOs
to modulate the LED light for data transmission.

2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-02-7 © 2018 IFIP 118

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 100 0 0 0 0 0 0 0

Remove value

Shift

{Compare
Sample A

Sample B

Sample C

Sample D

Sample A > Sample B -> 0 Preamble_Register
Sample B > Sample C -> 1 Preamble_Register
Sample C > Sample D -> 0 Preamble_Register

Fig. 3. Pseudo-correlation from binarized measurements

At the receiver, light signals are detected by the photodiode
and sampled by the firmware in the PRUs. Once a valid
preamble and SFD are detected, received data is sent to the
PRU controller, which then forwards it to the OpenVLC driver.
Finally, the received data is sent to the upper layers by the
MAC layer.

IV. OPENVLC1.2 FIRMWARE

The OpenVLC 1.2 firmware runs in the PRUs of the BBB.
The PRUs operate at 200 MHz, meaning that each instruction
takes 5 ns. Recall that the main objective of adopting the PRUs
in OpenVLC1.2 is to increase the speed of modulating the
LED and boost the sampling frequency. To be as precise as
possible on the modulation and sampling, we use assembly to
program the PRUs. This allows us to know exactly how many
instructions are needed to perform one sampling or how long
does it take to modulate the LED to transmit one symbol.

A. Firmware for signal transmission

In the firmware, only one PRU is adopted for signal trans-
mission (modulating the LED to send symbols). A counter is
implemented to trigger the transmission of symbols. Each time
the counter reaches zero, a symbol is transmitted by turning
on/off the LED and the counter is initialized. The value of
the counter depends on the transmission rate. The higher the
value, the lower the transmission rate.

The PRU for the symbol transmission does not perform any
symbol processing. The symbols are encoded by the OpenVLC
driver. Then they are transmitted to the firmware via the PRU
controller. More details on this interfacing are in Sec. IV-C.

B. Firmware for signal reception

Two PRUs are used to receive visible light signals. One
of them, PRU0, performs the signal sampling by frequently
reading the Received Signal Strength (RSS) converted by the
ADC. The other one, PRU1, handles frame detection. PRU0

interfaces the ADC and reads the RSSs from it. The RSSs
are read at the same frequency as the corresponding signal is
transmitted, using a timer in the same way (see Sec. IV-A).
Once the RSSs are obtained, they are shared with PRU1 via
a shared memory. PRU1 interprets the RSSs into symbols for
frame detection1. PRU1 continues to check if a new RSS has
been read by PRU0. If yes, PRU1 processes it immediately.

1We use on-off-keying modulation. A symbol is either a HIGH or a LOW.

A new frame is assumed to be detected when the preamble
and the SFD are detected. Ideally, this detection would be
done with a cross-correlation between the received signal and
the expected signal. However, this approach is not feasible
using the available PRU instruction set in assembly or being
performed in real time by the main CPU of the BBB.

In the firmware, we design a new technique called pseudo-
correlation to detect frames, as illustrated in Fig. 3. First, the
RSS read from the ADC is binarized using the previously
received raw value. Because the preamble is 0xAAAAAA, a
LOW symbol will always be between two HIGHs, and vice
versa, a HIGH symbol between two LOWs. Comparing the
current RSS with the previous one, the firmware can interpret
it. Then the symbol value is inserted into a shifting register
and a series of symbols in the register are compared with the
expected value of the preamble. If they match, a preamble is
detected; otherwise, the process is repeated when there is a
new RSS shared from PRU0. A similar approach is applied to
the SFD detection. Once the preamble and SFD are detected,
the threshold to interpret the RSSs to symbols is calculated by
averaging the highest and lowest RSSs of the preamble.

After successfully detecting the preamble and SFD, PRU1

continues to interpret 16 symbols to obtain the frame length.
Once the length is identified, PRU1 continues to interpret the
symbols using the threshold to obtain the whole frame. Once
the whole frame is received, it is sent to the PRU controller
and then to the OpenVLC driver for further process.

C. Interface with the PRU Controller
As mentioned before, the firmware is written in assembly to

achieve precise timing control. This solution makes it difficult
to synchronize PRUs with the rest of the OpenVLC software.
To solve it, we design an asynchronous system based on
memory triggers for both signal transmission and reception.

1) Signal transmission: The PRU controller sends data to
the PRU via shared memory. The first 32-bits (referred as
the first ‘register’ in the rest of this paper) of the shared
memory represent the number of symbols to be transmitted.
The actual symbols are stored in the remaining shared memory.
The first ‘register’ has two purposes: (1) it denotes the number
of symbols to be sent; (2) if its value is 0, it means that there
is still no data to be transmitted. The PRU constantly reads
this ‘register’ to check if there is data to be transmitted.

Once the PRU finishes the transmission, it sets the value of
that ‘register’ to 0. Then, the PRU controller knows that the
data transmission has finished.

2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-02-7 © 2018 IFIP 119

0 1 2 3 … n

PRU	0 PRU	1

PRU	Controller

# 0 1 2 3 … nVLC	Channel

Fig. 4. Memory sharing between the PRUs, and between PRU1 and the PRU
controller (‘#’ stores the physical address of the latest updated data).

2) Signal reception: While receiving, PRU0 captures data
from ADC and stores it to a shared memory with PRU1. This
memory is circular and continuously updated. The address of
the latest measurement is placed at the beginning of the shared
memory as illustrated in Fig. 4. Based on this information,
PRU1 reads the data and processes it. Once a frame is totally
decoded, PRU1 sends it to the PRU controller through a shared
memory, similar to the one used in the TX. This is also
illustrated in Fig. 4.

V. PRELIMINARY EVALUATIONS

In this section we evaluate the performance of OpenVLC1.2.
Setup. We use two OpenVLC1.2 nodes, one as a transmitter

and the other as a receiver. For the optical devices, we use the
SENCART 2W LED and the SFH-206 (PD). The sampling
frequency at the receiver is 200 MHz. The speed of modulating
the LED light at the transmitter is set to the same frequency.
Since OpenVLC1.2 provides a new network interface that can
be easily accessed by upper layer applications, we use the tool
iperf to evaluate the UDP performance of OpenVLC1.2.

Throughput vs. payload. We place the receiver at a distance
of 20 cm from the transmitter. We vary the UDP payload
from 50 to 900 bytes. The evaluation results are shown in
Fig. 5(a). We can observe that the UDP throughput first
increases then decreases with the increasing of payload. If the
payload is small, the throughput is low due to the relative large
overhead in the frame headers. When the payload is large, the
probability of wrongly decoding a frame also increases, which
degrades the achievable system throughput. Nevertheless, we
can see that the maximum UDP throughput achieved by Open-
VLC1.2 can reach 100 kb/s when the payload is 300 bytes,
increasing the throughput over its predecessors by around 8x.

Throughput vs. distance. In this scenario, we fix the payload
to 300 bytes. We vary the distance between the transmitter and
the receiver to evaluate the performance of OpenVLC1.2 with
respect to distance. The results are shown in Fig. 5(b). We
can see that the UDP throughput remains around 100 kb/s at
distances up to 150 cm. After that, the signal strength becomes
weaker and the UDP throughput starts to decrease.

Limitations. The throughput and transmission distance in
OpenVLC1.2 can be still largely improved with better front-
end design. Nevertheless, the achieved 100 kb/s UDP through-
put in OpenVLC1.2 is fast enough for several IoT applications.

0 300 600 900

Payload (bytes)

20

40

60

80

100

120

U
D

P
 t

h
ro

u
g

h
p

u
t

(k
b

/s
)

(a) UDP throughput vs. payload

0 50 100 150 200 250

Distance (cm)

20

40

60

80

100

120

U
D

P
 T

h
ro

u
g

h
p

u
t

(k
b

/s
)

(b) UDP throughput vs. distance

Fig. 5. Preliminary evaluations of the OpenVLC1.2 platform

VI. CONCLUSION

In this paper, we presented the design and preliminary per-
formance evaluation of OpenVLC1.2, an open-source platform
designed to lower the barriers to VLC research for the Internet
of Things. To the best of our knowledge, OpenVLC1.2 is the
first open-source platform that achieves a UDP throughput of
100 kb/s using only low-end hardware. Apart from being used
for research and teaching as its predecessors, OpenVLC1.2
can enable applications in real world. Going forward, we will
continue to improve the performance of OpenVLC to benefit
the research community.

ACKNOWLEDGMENT

This work has been funded in part by the Madrid Regional
Government through TIGRE5-CM (S2013/ICE-2919) and in
part by the “La Caixa international PhD program” fellowship.

REFERENCES

[1] “pureLiFi,” https://purelifi.com/, 2018.
[2] J. Zhang, X. Zhang, and G. Wu, “Dancing with light: Predictive in-frame

rate selection,” in Proc. IEEE INFOCOM, 2015, pp. 1–9.
[3] C. B. Liu, B. Sadeghi, and E. W. Knightly, “Enabling vehicular visible

light communication (V2LC) networks,” in Proc. VANET, 2011.
[4] “WARP Project,” http://warpproject.org, 2018.
[5] “Universal Software Radio Peripheral,” https://www.ettus.com/, 2018.
[6] N. O. Tippenhauer, D. Giustiniano, and S. Mangold, “Toys communi-

cating with leds: Enabling toy cars interaction,” in IEEE CCNC, 2012.
[7] T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing

using visible light communication,” in ACM MobiCom, 2015.
[8] C. Zhang, J. Tabor, J. Zhang, and X. Zhang, “Extending mobile

interaction through near-field visible light sensing,” in ACM MobiCom,
2015.

[9] Y. Kuo, P. Pannuto, K. Hsiao, and P. Dutta, “Luxapose: Indoor position-
ing with mobile phones and visible light,” in ACM MobiCom, 2014.

[10] C. Zhang and X. Zhang, “Litell: Robust indoor localization using
unmodified light fixtures,” in ACM MobiCom, 2016.

[11] Q. Wang, M. Zuniga, and D. Giustiniano, “Passive communication with
ambient light,” in ACM CoNEXT, 2016.

[12] X. Xu, Y. Shen, J. Yang, C. Xu, G. Shen, G. Chen, and Y. Ni, “Pas-
siveVLC: Enabling Practical Visible Light Backscatter Communication
for Battery-free IoT Applications,” in ACM MobiCom, 2017.

[13] Q. Wang, D. Giustiniano, and D. Puccinelli, “OpenVLC: Software-
Defined Visible Light Embedded Networks,” in ACM VLCS, 2014.

[14] “BeagleBone Black,” http://beagleboard.org/Products/BeagleBone+Black,
2018.

2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-02-7 © 2018 IFIP 120

