
Overview of Day 1

 Some background on OpenAirInterface

 OAI RAN (openairinterface5g) Software Architecture
– Functional entities
Focus today on L1 procedures for eNodeB

– Real-time-scheduling
Example with USRP RF

 SIMD Processing and Optimizations used in OAI

(c) Eurecom 2017

htpp://www.eurecom.fr/

BACKGROUND ON OAI

(c) Eurecom 2017

htpp://www.eurecom.fr/

A bit about R. Knopp

 From Montreal, Canada

 B.Eng (Hons) (1992), M. Eng. McGill University
(1993), Dr. Sc. (1997) EPFL
– Work in Digital Communications, Wireless systems and

protocols, real-time prototyping methods

 Currently Professor @ EURECOM, Sophia Antipolis
Technopole, France (near the city of Nice)
– Research center in Communication Systems, Security and Data

Science
– 4-5th year Engineering curriculum(~120 students) + PhD (70

students)

(c) Eurecom 2017

htpp://www.eurecom.fr/

Commoditization of 3GPP Radio Systems and
Open-Source : OAI Software Alliance

 Today it is feasible to put a fully-compliant 4G eNodeB and
EPC in a commodity x86 or ARM-based computer (or data
center for a pool of eNodeBs)
– Emergence of “radio”-hackers in addition to commercial vendors
– OAI Alliance

launched in 2014 as a “Fonds de Dotation”
3GPP strategic members in 2015-2017 (Orange, TCL-Alcatel, Ercom,

Nokia)
Many associate members (Cisco, B-COM, INRIA, IMT, TNO, III,

Rutgers WINLAB, U. Washington, BUPT, IITH etc.)

 Coupling this with an open-source community makes for a very
disruptive technology for the onset of 5G
– What we’re building

Community of individual developers, academics and major industrials
embracing open-source for 5G

– What we hope to become
A strong voice and maybe a game-changer in the 3GPP world

 Real impact from “the little guys” on 3GPP systems

Evolution of Telecom and Open-Source

htpp://www.eurecom.fr/

OSA Components

 FRAND License allows committing software with patent rights into OSA and
still keep licensing rights -> Inline with 3GPP fair use licensing policy

 We aim to work closely with ETSI on implications of open-source for
licensing/certification

 Future 5G Core Network developed within eNB/UE repository will inherit
FRAND license

htpp://www.eurecom.fr/

Bringing open-source into the RAN

 Challenges for 4.5G/5G
– FRAND License for open-source

Allow 3GPP members to contribute to
open-source and still perceive
royalties

Compatible with
 academic/research/prototyping use
 commercial use in devices, data

centers and testing equipment
Approval by Nokia, Orange, TCL and

Ericsson (observer)
– Community coexistence/synergy with

standardization process
Use of open-source in prototyping

phase of 5G
Open-source community following

3GPP process
Community representation in 3GPP

via OSA

Evolution of Telecom and Open-Source

eNB eNB eNB

Mobile Edge
Cloud

EPC + ClearWater IMS,
FreePCRF (OpenStack + JuJu)

S1AP GTPu

Main CLOUD

S1AP GTPu S1AP GTPu

UE

htpp://www.eurecom.fr/

OAI Offering

 eNodeB software for x86/ARM
– 4G Implementation

Rel 10 (with many missing and incomplete features under development
by the community)

Some extensions to Rel-14
 LTE-M, NB-IoT under dev
 Sidelink eNodeB procedures under dev

– 5G Rel-15 underway in OAI community

 UE Software for x86/ARM
– 4G Implementation

Rel 10 (with many missing and incomplete features under development
by the community)

Some extensions to Rel-14
 Sidelink UE procedures under dev

 EPC Software
– Rel10 3GPP MME/HSS/S-PGW
– Rel14 extensions under development
– Transition to 5G core service-based architecture

(c) Eurecom 2017

htpp://www.eurecom.fr/

RAN ARCHITECTURE

(c) Eurecom 2017

htpp://www.eurecom.fr/

Current vRAN Roadmap in OAI

(c) Eurecom 2017

NFAPI

NFAPI

htpp://www.eurecom.fr/

Current Functional Entities

(c) Eurecom 2017

htpp://www.eurecom.fr/

NGFI fronthaul splits today in OAI

(c) Eurecom 2017

NR study item
R3-171162

htpp://www.eurecom.fr/

RRU/RAU

 OAI current
lower-layer
functional split
– a network of radio

units (L1-low)
– a precoding

function and
switching function

– Regular
(virtualized) eNB
functions

(c) Eurecom 2017

htpp://www.eurecom.fr/

(c) Eurecom 2017

OAI RAN (CU-DU) Architecture

htpp://www.eurecom.fr/

RU and L1 Instances

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU and L1 Instances

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU and L1 Instances

(c) Eurecom 2017

htpp://www.eurecom.fr/

RADIO SEGMENT (RU)

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU Procedures (monolithic eNB/gNB)

(c) Eurecom 2017

htpp://www.eurecom.fr/

(c) Eurecom 2017

htpp://www.eurecom.fr/

(c) Eurecom 2017

TX Precoding (monolithic eNB/gNB)

htpp://www.eurecom.fr/

LAYER 1 HIGH SEGMENT
(ENB/GNB)

(c) Eurecom 2017

htpp://www.eurecom.fr/

Layer 1 TX per eNB instance

(c) Eurecom 2017

htpp://www.eurecom.fr/

Layer 1 RX per eNB instance

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU/eNodeB OAI PUSCH Procedures

(c) Eurecom 2017

in RU

htpp://www.eurecom.fr/

RU/eNodeB PRACH procedures

(c) Eurecom 2017

in RU

htpp://www.eurecom.fr/

eNodeB PUCCH (1/1A/1B) Procedures

(c) Eurecom 2017

htpp://www.eurecom.fr/

PHY/MAC INTERFACE

(c) Eurecom 2017

htpp://www.eurecom.fr/

OAI IF1’’ – MAC/PHY Interface

(c) Eurecom 2017

htpp://www.eurecom.fr/

OAI IF1’’ – MAC/PHY

(c) Eurecom 2017

htpp://www.eurecom.fr/

OAI IF1’’ – MAC/PHY

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU AND LAYER 1 PROCESS
SCHEDULING

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU Process Scheduling

(c) Eurecom 2017

htpp://www.eurecom.fr/

L1 Process Scheduling

(c) Eurecom 2017

htpp://www.eurecom.fr/

Timing (“Almost” Single-Thread Mode)

(c) Eurecom 2017

htpp://www.eurecom.fr/

Timing (Even/Odd Threading Mode)

(c) Eurecom 2017

htpp://www.eurecom.fr/

Multi-threading lower-layer operations

 Front-end Processing (RU)
– Parallelizing even/odd slots in Fourier Transforms (TX and RX in

RU)

 Back-end Processing (L1)
– Parallelizing Segments in Turbo-encoder / Rate-Matching
– Parallelizing Segments in Rate-Matching Inversion / Turbo-

Decoder

 Run worker threads in parallel to main thread in
“single-thread” mode

(c) Eurecom 2017

htpp://www.eurecom.fr/

SIMD PROCESSING IN OAI

(c) Eurecom 2017

htpp://www.eurecom.fr/

SIMD in OAI

 All key time-critical routines are coded using fixed-
point processing and SIMD vector extensions in x86-
64 or ARM architecture
– FFTs and basic routines use 16-bit AVX2 (downgraded to SSE4

on AVX2-less targets)
– Turbo encoder uses a combination of AVX2 and MMX
– Turbo decoder uses 8-bit SSE4 (128-bit). Will be upgraded to

AVX2. But this takes effort and time …
– Viterbi decoder uses 8-bit SSE4
– ARM Neon largely written

 Soon upgraded to AVX512 on recent IA

 New routines to come
– LDPC encode/decode for NR

(c) Eurecom 2017

htpp://www.eurecom.fr/

Key linear processing operations which can be
vectorized easily with SIMD

 Inner-products (synchronization, projection
operations)

 Componentwise products
(compensation/equalization, channel estimation)

 FFT/IFFTs (OFDM TX/RX)

 Peak search in vector (synchronization)

 Vector addition, subtraction, energy, absolute
value

htpp://www.eurecom.fr/

Coding with SIMD

 SIMD = Single Instruction Multiple Data
– Operate on vectors of samples with parallel instructions

 Good for linear processing in front-end and trellis-
processing (turbo/Viterbi decoding)

htpp://www.eurecom.fr/

OAI Radix-4 DFT

 Basic idea is to optimize
– the 16-point DFT with SIMD
– the 16-bit complex radix-4 and

radix-2 butterflies
– Build up

64,128,256,512,1024,2048
from there

 Two butterfly stages
(radix 4), one with
twiddles

 One permutation

htpp://www.eurecom.fr/

OAI DFT with SSE4

 register __m128i x1_flip,x3_flip,x02t,x13t;
 register __m128i xtmp0,xtmp1,xtmp2,xtmp3;

 // First stage : 4 Radix-4 butterflies without input twiddles
 x02t = _mm_adds_epi16(x128[0],x128[2]);
 x13t = _mm_adds_epi16(x128[1],x128[3]);
 xtmp0 = _mm_adds_epi16(x02t,x13t);
 xtmp2 = _mm_subs_epi16(x02t,x13t);

 // multiplication of x1 and x3 by sqrt(-1)
 x1_flip = _mm_sign_epi16(x128[1],*(__m128i*)conjugatedft);
 x1_flip = _mm_shufflelo_epi16(x1_flip,_MM_SHUFFLE(2,3,0,1));
 x1_flip = _mm_shufflehi_epi16(x1_flip,_MM_SHUFFLE(2,3,0,1));
 x3_flip = _mm_sign_epi16(x128[3],*(__m128i*)conjugatedft);
 x3_flip = _mm_shufflelo_epi16(x3_flip,_MM_SHUFFLE(2,3,0,1));
 x3_flip = _mm_shufflehi_epi16(x3_flip,_MM_SHUFFLE(2,3,0,1));

 x02t = _mm_subs_epi16(x128[0],x128[2]);
 x13t = _mm_subs_epi16(x1_flip,x3_flip);
 xtmp1 = _mm_adds_epi16(x02t,x13t); // x0 + x1f - x2 - x3f
 xtmp3 = _mm_subs_epi16(x02t,x13t); // x0 - x1f - x2 + x3f

=

htpp://www.eurecom.fr/

Performance and Extensions

 OAI Radix-4 DFTs provide essentially the same
performance as FFTW
– Approx 300 cycles for 64-point DFT on a x86-64 core i5/i7/Xeon

machine (gcc generated)
– For larger DFTs, both are slightly less than the closed IPP

libraries from Intel (based on SPIRAL code generator)
– OAI doesn’t make use of FFTW only because we use the DFT

optimizations for teaching SIMD coding to our Engineering
diploma students.

 OAI also provides all the mixed-radix DFTs that are
required for UE and eNB DSP
– 2a3b5c for SC-FDMA (uplink transmission formats)
– 2N3 for random-access preamble (PRACH TX at UE and RX at

eNB)

htpp://www.eurecom.fr/

Turbo Decoding

 The primary (by far) bottleneck in an HSPA/LTE receiver
is the turbo decoder

 SIMD parallelization can be done in different ways
– OAI adopts a scalable SIMD max-logmap approach whereby code

blocks (8-bit LLRs) are split in 16 (SSE4) or 32 (AVX2) equal size
sub-blocks

– integer x86 SIMD arithmetic is used to efficiently perform the
forward-backward BCJR recursions (16 or 32-way parallel add,
subtract, max) and extrinsic information computation

– Care must also be taken when it comes to the interleaving and data
reforming operations in a turbo decoder. These can also benefit
from SIMD

 x86-64 is much more efficient for Turbo decoding than
legacy x86 because of the fact that the number of
available registers is doubled

htpp://www.eurecom.fr/

RTOS issues

 Low-latency radio applications for PHY (e.g. 802.11x,LTE)
should run under an RTOS
– eCos/MutexH for generic GNU environment
– RTAI for x86
– VXWorks ($$$)

 Example: RTAI / RT-PREEMPT kernel can achieve worst-
case latencies below 30µs on a loaded-PC. More than
good enough for LTE, but not 802.11x because of MAC
timing.

 Should make use of POSIX multithreading for SMP
– Rich open-source tool chains for such environments (Linux, BSD,

etc.)
– Simple to simulate on GNU-based systems for validation in user-

space
– Allow each radio instance to use multiple threads on common HW

htpp://www.eurecom.fr/

Issues with standard Linux Kernels

 Scheduler latency
– Kernel is not pre-emptible
– Overhead in disabling/enabling interrupts

 Mainstream kernel solutions
– Kernel preemption (RT-PREEMPT) – mainstream until 2.6.32

(patches afterwards)
– Latency reduction (soft-RT kernels)
– Version >3.14

 Patches / dual-OS solution
– ADEOS + RTAI/Xenomai

htpp://www.eurecom.fr/

RTAI/Xenomai

 Real-time nano-kernel tightly integrated with Linux
kernel
– Linux runs as a low-priority thread under RTAI/Xenomai and and

both share same memory space
– Both RTAI and Xenomai make use of ADEOS which is a

hardware abstraction framework which allows several OS to
share HW resources
Low-level Scheduler allows Linux kernel to run in

background
– Both RTAI and Xenomai provide user-space real-time

functionality in addition to kernel-only applications
Provide various API flavours to resemble classical OS (e.g.

Posix, VXWorks, RTDM, etc.)

htpp://www.eurecom.fr/

RT-PREEMPT and recent Linux Low-Latency
Kernels

 The RT-Preempt patch and out-of-the-box Linux kernel (>3.14)
converts Linux into a fully preemptible kernel. The magic is done
with:

– Making in-kernel locking-primitives (using spinlocks) preemptible though
reimplementation with rtmutexes.

– Critical sections protected by i.e. spinlock_t and rwlock_t are now preemptible.
The creation of non-preemptible sections (in kernel) is still possible with
raw_spinlock_t (same APIs like spinlock_t).

– Implementing priority inheritance for in-kernel spinlocks and semaphores. For
more information on priority inversion and priority inheritance please consult
Introduction to Priority Inversion.

– Converting interrupt handlers into preemptible kernel threads: The RT-Preempt
patch treats soft interrupt handlers in kernel thread context, which is represented
by a task_struct like a common user space process. However it is also possible
to register an IRQ in kernel context.

– Converting the old Linux timer API into separate infrastructures for high
resolution kernel timers plus one for timeouts, leading to user space POSIX
timers with high resolution.

 In our experience, these solutions provide slightly lower-
performance w.r.t. RTAI, but the other advantages greatly
outweigh this penalty.

htpp://www.eurecom.fr/
http://en.wikipedia.org/wiki/Spinlock
https://rt.wiki.kernel.org/index.php/Priority_inheritance
https://rt.wiki.kernel.org/index.php/Priority_inversion

	Overview of Day 1
	Background on OAI
	A bit about R. Knopp
	Commoditization of 3GPP Radio Systems and Open-Source : OAI Software Alliance
	Slide Number 5
	Bringing open-source into the RAN
	OAI Offering
	RAN Architecture
	Current vRAN Roadmap in OAI
	Current Functional Entities
	NGFI fronthaul splits today in OAI
	RRU/RAU
	OAI RAN (CU-DU) Architecture
	RU and L1 Instances
	RU and L1 Instances
	RU and L1 Instances
	Radio Segment (RU)
	RU Procedures (monolithic eNB/gNB)
	Slide Number 19
	TX Precoding (monolithic eNB/gNB)
	Layer 1 High Segment (eNB/GNB)
	Layer 1 TX per eNB instance
	Layer 1 RX per eNB instance
	RU/eNodeB OAI PUSCH Procedures
	RU/eNodeB PRACH procedures
	eNodeB PUCCH (1/1A/1B) Procedures
	PHY/MAC Interface
	OAI IF1’’ – MAC/PHY Interface
	OAI IF1’’ – MAC/PHY
	OAI IF1’’ – MAC/PHY
	RU and Layer 1 PROCESS SCHEDULING
	RU Process Scheduling
	L1 Process Scheduling
	Timing (“Almost” Single-Thread Mode)
	Timing (Even/Odd Threading Mode)
	Multi-threading lower-layer operations
	SIMD Processing in OAI
	SIMD in OAI
	Key linear processing operations which can be vectorized easily with SIMD
	Coding with SIMD
	OAI Radix-4 DFT
	OAI DFT with SSE4
	Performance and Extensions
	Turbo Decoding
	RTOS issues
	Issues with standard Linux Kernels
	RTAI/Xenomai
	RT-PREEMPT and recent Linux Low-Latency Kernels

