
Overview of Day 1 

 Some background on OpenAirInterface  

 OAI RAN (openairinterface5g) Software Architecture 
– Functional entities 
Focus today on L1 procedures for eNodeB 

– Real-time-scheduling 
Example with USRP RF 

 SIMD Processing and Optimizations used in OAI 
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BACKGROUND ON OAI 
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A bit about R. Knopp 

 From Montreal, Canada 

 B.Eng (Hons) (1992), M. Eng. McGill University 
(1993), Dr. Sc. (1997) EPFL 
– Work in Digital Communications, Wireless systems and 

protocols, real-time prototyping methods  

 Currently Professor @ EURECOM, Sophia Antipolis 
Technopole, France (near the city of Nice) 
– Research center in Communication Systems, Security and Data 

Science 
– 4-5th year Engineering curriculum(~120 students) + PhD (70 

students) 
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Commoditization of 3GPP Radio Systems and 
Open-Source : OAI Software Alliance 

 Today it is feasible to put a fully-compliant 4G eNodeB and 
EPC in a commodity x86 or ARM-based computer (or data 
center for a pool of eNodeBs) 
– Emergence of “radio”-hackers in addition to commercial vendors 
– OAI Alliance  

launched in 2014 as a “Fonds de Dotation” 
3GPP strategic members in 2015-2017 (Orange, TCL-Alcatel, Ercom, 

Nokia) 
Many associate members (Cisco, B-COM, INRIA, IMT, TNO, III, 

Rutgers WINLAB, U. Washington, BUPT, IITH etc.) 

 Coupling this with an open-source community makes for a very 
disruptive technology for the onset of 5G 
– What we’re building 

Community of individual developers, academics and major industrials 
embracing open-source for 5G 

– What we hope to become 
A strong voice and maybe a game-changer in the 3GPP world 

 Real impact from “the little guys” on 3GPP systems 

Evolution of Telecom and Open-Source 
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OSA Components 

 

 FRAND License allows committing software with patent rights into OSA and 
still keep licensing rights -> Inline with 3GPP fair use licensing policy 

 We aim to work closely with ETSI on implications of open-source for 
licensing/certification 

 Future 5G Core Network developed within eNB/UE repository will inherit 
FRAND license  
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Bringing open-source into the RAN 

 Challenges for 4.5G/5G 
– FRAND License for open-source 

Allow 3GPP members to contribute to 
open-source and still perceive 
royalties 

Compatible with 
  academic/research/prototyping use 
 commercial use in devices, data 

centers and testing equipment 
Approval by Nokia, Orange, TCL and 

Ericsson (observer) 
– Community coexistence/synergy with 

standardization process 
Use of open-source in prototyping 

phase of 5G 
Open-source community following 

3GPP process 
Community representation in 3GPP 

via OSA 

Evolution of Telecom and Open-Source 

eNB eNB eNB 

Mobile Edge 
Cloud 

EPC + ClearWater IMS, 
FreePCRF (OpenStack + JuJu) 

S1AP GTPu 

Main CLOUD 

S1AP GTPu S1AP GTPu 

UE 
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OAI Offering 

 eNodeB software for x86/ARM 
– 4G Implementation 

Rel 10 (with many missing and incomplete features under development 
by the community) 

Some extensions to Rel-14 
 LTE-M, NB-IoT under dev 
 Sidelink eNodeB procedures under dev 

– 5G Rel-15 underway in OAI community 

 UE Software for x86/ARM 
–  4G Implementation 

Rel 10 (with many missing and incomplete features under development 
by the community) 

Some extensions to Rel-14 
 Sidelink UE procedures under dev 

 EPC Software 
– Rel10 3GPP MME/HSS/S-PGW 
– Rel14 extensions under development 
– Transition to 5G core service-based architecture 
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RAN ARCHITECTURE 
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Current vRAN Roadmap in OAI 
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NFAPI 

NFAPI 
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Current Functional Entities 
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NGFI fronthaul splits today in OAI 
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NR study item 
R3-171162 
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RRU/RAU 

 OAI current 
lower-layer 
functional split  
– a network of radio 

units (L1-low) 
– a precoding 

function and 
switching function 

– Regular 
(virtualized) eNB 
functions 
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OAI RAN (CU-DU) Architecture 
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RU and L1 Instances 
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RU and L1 Instances 
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RU and L1 Instances 
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RADIO SEGMENT (RU) 
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RU Procedures (monolithic eNB/gNB) 
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TX Precoding (monolithic eNB/gNB) 
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LAYER 1 HIGH SEGMENT 
(ENB/GNB) 
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Layer 1 TX per eNB instance 
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Layer 1 RX per eNB instance  
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RU/eNodeB OAI PUSCH Procedures 
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in RU 
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RU/eNodeB PRACH procedures 
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in RU 
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eNodeB PUCCH (1/1A/1B) Procedures 
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PHY/MAC INTERFACE 
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OAI IF1’’ – MAC/PHY Interface 

(c) Eurecom 2017 

htpp://www.eurecom.fr/


OAI IF1’’ – MAC/PHY 
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OAI IF1’’ – MAC/PHY 
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RU AND LAYER 1 PROCESS 
SCHEDULING 
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RU Process Scheduling 
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L1 Process Scheduling 
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Timing (“Almost” Single-Thread Mode) 
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Timing (Even/Odd Threading Mode) 
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Multi-threading lower-layer operations 

 Front-end Processing (RU) 
– Parallelizing even/odd slots in Fourier Transforms (TX and RX in 

RU) 

 Back-end Processing (L1) 
– Parallelizing Segments in Turbo-encoder / Rate-Matching 
– Parallelizing Segments in Rate-Matching Inversion / Turbo-

Decoder 

 Run worker threads in parallel to main thread in 
“single-thread” mode 

(c) Eurecom 2017 
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SIMD PROCESSING IN OAI 

(c) Eurecom 2017 

htpp://www.eurecom.fr/


SIMD in OAI 

 All key time-critical routines are coded using fixed-
point processing and SIMD vector extensions in x86-
64 or ARM architecture 
– FFTs and basic routines use 16-bit AVX2 (downgraded to SSE4 

on AVX2-less targets) 
– Turbo encoder uses a combination of AVX2 and MMX 
– Turbo decoder uses 8-bit SSE4 (128-bit). Will be upgraded to 

AVX2. But this takes effort and time … 
– Viterbi decoder uses 8-bit SSE4 
– ARM Neon largely written  

 Soon upgraded to AVX512 on recent IA 

 New routines to come 
– LDPC encode/decode for NR 

(c) Eurecom 2017 
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Key linear processing operations which can be 
vectorized easily with SIMD 

 Inner-products (synchronization, projection 
operations) 

 Componentwise products 
(compensation/equalization, channel estimation) 

 FFT/IFFTs (OFDM TX/RX) 

 Peak search in vector (synchronization) 

 Vector addition, subtraction, energy, absolute 
value 
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Coding with SIMD 

 SIMD = Single Instruction Multiple Data 
– Operate on vectors of samples with parallel instructions 

 Good for linear processing in front-end and trellis-
processing (turbo/Viterbi decoding) 
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OAI Radix-4 DFT 

 Basic idea is to optimize 
– the 16-point DFT with SIMD 
– the 16-bit complex radix-4 and 

radix-2 butterflies 
– Build up 

64,128,256,512,1024,2048 
from there 

 Two butterfly stages 
(radix 4), one with 
twiddles 

 One permutation 
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OAI DFT with SSE4 

 register __m128i x1_flip,x3_flip,x02t,x13t; 
 register __m128i xtmp0,xtmp1,xtmp2,xtmp3; 
 
  // First stage : 4 Radix-4 butterflies without input twiddles 
  x02t    = _mm_adds_epi16(x128[0],x128[2]); 
  x13t    = _mm_adds_epi16(x128[1],x128[3]); 
  xtmp0   = _mm_adds_epi16(x02t,x13t); 
  xtmp2   = _mm_subs_epi16(x02t,x13t); 
 
  // multiplication of x1 and x3 by sqrt(-1) 
  x1_flip = _mm_sign_epi16(x128[1],*(__m128i*)conjugatedft); 
  x1_flip = _mm_shufflelo_epi16(x1_flip,_MM_SHUFFLE(2,3,0,1)); 
  x1_flip = _mm_shufflehi_epi16(x1_flip,_MM_SHUFFLE(2,3,0,1)); 
  x3_flip = _mm_sign_epi16(x128[3],*(__m128i*)conjugatedft); 
  x3_flip = _mm_shufflelo_epi16(x3_flip,_MM_SHUFFLE(2,3,0,1)); 
  x3_flip = _mm_shufflehi_epi16(x3_flip,_MM_SHUFFLE(2,3,0,1)); 
 
  x02t    = _mm_subs_epi16(x128[0],x128[2]); 
  x13t    = _mm_subs_epi16(x1_flip,x3_flip); 
  xtmp1   = _mm_adds_epi16(x02t,x13t);  // x0 + x1f - x2 - x3f 
  xtmp3   = _mm_subs_epi16(x02t,x13t);  // x0 - x1f - x2 + x3f 

= 
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Performance and Extensions 

 OAI Radix-4 DFTs provide essentially the same 
performance as FFTW 
– Approx 300 cycles for 64-point DFT on a x86-64 core i5/i7/Xeon 

machine (gcc generated) 
– For larger DFTs, both are slightly less than the closed IPP 

libraries from Intel (based on SPIRAL code generator) 
– OAI doesn’t make use of FFTW only because we use the DFT 

optimizations for teaching SIMD coding to our Engineering 
diploma students. 

 OAI also provides all the mixed-radix DFTs that are 
required for UE and eNB DSP 
– 2a3b5c for SC-FDMA (uplink transmission formats) 
– 2N3 for random-access preamble (PRACH TX at UE and RX at 

eNB) 
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Turbo Decoding 

 The primary (by far) bottleneck in an HSPA/LTE receiver 
is the turbo decoder 

 SIMD parallelization can be done in different ways 
– OAI adopts a scalable SIMD max-logmap approach whereby code 

blocks (8-bit LLRs) are split in 16 (SSE4) or 32 (AVX2) equal size 
sub-blocks 

– integer x86 SIMD arithmetic is used to efficiently perform the 
forward-backward BCJR recursions (16 or 32-way parallel add, 
subtract, max) and extrinsic information computation 

– Care must also be taken when it comes to the interleaving and data 
reforming operations in a turbo decoder.  These can also benefit 
from SIMD 

 x86-64 is much more efficient for Turbo decoding than 
legacy x86 because of the fact that the number of 
available registers is doubled 
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RTOS issues 

 Low-latency radio applications for PHY (e.g. 802.11x,LTE) 
should run under an RTOS 
– eCos/MutexH for generic GNU environment 
– RTAI for x86 
– VXWorks ($$$) 

 Example: RTAI / RT-PREEMPT kernel can achieve worst-
case latencies below 30µs on a loaded-PC.  More than 
good enough for LTE, but not 802.11x because of MAC 
timing. 

 

 Should make use of POSIX multithreading for SMP 
– Rich open-source tool chains for such environments (Linux, BSD, 

etc.) 
– Simple to simulate on GNU-based systems for validation in user-

space 
– Allow each radio instance to use multiple threads on common HW 

htpp://www.eurecom.fr/


Issues with standard Linux Kernels 

 Scheduler latency 
– Kernel is not pre-emptible 
– Overhead in disabling/enabling interrupts 

 Mainstream kernel solutions 
– Kernel preemption (RT-PREEMPT) – mainstream until 2.6.32 

(patches afterwards) 
– Latency reduction (soft-RT kernels) 
– Version >3.14 

 Patches / dual-OS solution 
– ADEOS + RTAI/Xenomai 
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RTAI/Xenomai 

 Real-time nano-kernel tightly integrated with Linux 
kernel 
– Linux runs as a low-priority thread under RTAI/Xenomai and and 

both share same memory space 
– Both RTAI and Xenomai make use of ADEOS which is a 

hardware abstraction framework which allows several OS to 
share HW resources 
Low-level Scheduler allows Linux kernel to run in 

background 
– Both RTAI and Xenomai provide user-space real-time 

functionality in addition to kernel-only applications 
Provide various API flavours to resemble classical OS (e.g. 

Posix, VXWorks, RTDM, etc.)  
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RT-PREEMPT and recent Linux Low-Latency 
Kernels 

 The RT-Preempt patch and out-of-the-box Linux kernel (>3.14) 
converts Linux into a fully preemptible kernel. The magic is done 
with:  

– Making in-kernel locking-primitives (using spinlocks) preemptible though 
reimplementation with rtmutexes.  

– Critical sections protected by i.e. spinlock_t and rwlock_t are now preemptible. 
The creation of non-preemptible sections (in kernel) is still possible with 
raw_spinlock_t (same APIs like spinlock_t).  

– Implementing priority inheritance for in-kernel spinlocks and semaphores. For 
more information on priority inversion and priority inheritance please consult 
Introduction to Priority Inversion.  

– Converting interrupt handlers into preemptible kernel threads: The RT-Preempt 
patch treats soft interrupt handlers in kernel thread context, which is represented 
by a task_struct like a common user space process. However it is also possible 
to register an IRQ in kernel context.  

– Converting the old Linux timer API into separate infrastructures for high 
resolution kernel timers plus one for timeouts, leading to user space POSIX 
timers with high resolution.  

 In our experience, these solutions provide slightly lower-
performance w.r.t. RTAI, but the other advantages greatly 
outweigh this penalty. 
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https://rt.wiki.kernel.org/index.php/Priority_inversion
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