
Overview of Day 1 

 Some background on OpenAirInterface  

 OAI RAN (openairinterface5g) Software Architecture 
– Functional entities 
Focus today on L1 procedures for eNodeB 

– Real-time-scheduling 
Example with USRP RF 

 SIMD Processing and Optimizations used in OAI 
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BACKGROUND ON OAI 
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A bit about R. Knopp 

 From Montreal, Canada 

 B.Eng (Hons) (1992), M. Eng. McGill University 
(1993), Dr. Sc. (1997) EPFL 
– Work in Digital Communications, Wireless systems and 

protocols, real-time prototyping methods  

 Currently Professor @ EURECOM, Sophia Antipolis 
Technopole, France (near the city of Nice) 
– Research center in Communication Systems, Security and Data 

Science 
– 4-5th year Engineering curriculum(~120 students) + PhD (70 

students) 
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Commoditization of 3GPP Radio Systems and 
Open-Source : OAI Software Alliance 

 Today it is feasible to put a fully-compliant 4G eNodeB and 
EPC in a commodity x86 or ARM-based computer (or data 
center for a pool of eNodeBs) 
– Emergence of “radio”-hackers in addition to commercial vendors 
– OAI Alliance  

launched in 2014 as a “Fonds de Dotation” 
3GPP strategic members in 2015-2017 (Orange, TCL-Alcatel, Ercom, 

Nokia) 
Many associate members (Cisco, B-COM, INRIA, IMT, TNO, III, 

Rutgers WINLAB, U. Washington, BUPT, IITH etc.) 

 Coupling this with an open-source community makes for a very 
disruptive technology for the onset of 5G 
– What we’re building 

Community of individual developers, academics and major industrials 
embracing open-source for 5G 

– What we hope to become 
A strong voice and maybe a game-changer in the 3GPP world 

 Real impact from “the little guys” on 3GPP systems 

Evolution of Telecom and Open-Source 
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OSA Components 

 

 FRAND License allows committing software with patent rights into OSA and 
still keep licensing rights -> Inline with 3GPP fair use licensing policy 

 We aim to work closely with ETSI on implications of open-source for 
licensing/certification 

 Future 5G Core Network developed within eNB/UE repository will inherit 
FRAND license  
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Bringing open-source into the RAN 

 Challenges for 4.5G/5G 
– FRAND License for open-source 

Allow 3GPP members to contribute to 
open-source and still perceive 
royalties 

Compatible with 
  academic/research/prototyping use 
 commercial use in devices, data 

centers and testing equipment 
Approval by Nokia, Orange, TCL and 

Ericsson (observer) 
– Community coexistence/synergy with 

standardization process 
Use of open-source in prototyping 

phase of 5G 
Open-source community following 

3GPP process 
Community representation in 3GPP 

via OSA 

Evolution of Telecom and Open-Source 

eNB eNB eNB 

Mobile Edge 
Cloud 

EPC + ClearWater IMS, 
FreePCRF (OpenStack + JuJu) 

S1AP GTPu 

Main CLOUD 

S1AP GTPu S1AP GTPu 

UE 
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OAI Offering 

 eNodeB software for x86/ARM 
– 4G Implementation 

Rel 10 (with many missing and incomplete features under development 
by the community) 

Some extensions to Rel-14 
 LTE-M, NB-IoT under dev 
 Sidelink eNodeB procedures under dev 

– 5G Rel-15 underway in OAI community 

 UE Software for x86/ARM 
–  4G Implementation 

Rel 10 (with many missing and incomplete features under development 
by the community) 

Some extensions to Rel-14 
 Sidelink UE procedures under dev 

 EPC Software 
– Rel10 3GPP MME/HSS/S-PGW 
– Rel14 extensions under development 
– Transition to 5G core service-based architecture 
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RAN ARCHITECTURE 
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Current vRAN Roadmap in OAI 
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NFAPI 

NFAPI 
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Current Functional Entities 
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NGFI fronthaul splits today in OAI 
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NR study item 
R3-171162 
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RRU/RAU 

 OAI current 
lower-layer 
functional split  
– a network of radio 

units (L1-low) 
– a precoding 

function and 
switching function 

– Regular 
(virtualized) eNB 
functions 
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OAI RAN (CU-DU) Architecture 
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RU and L1 Instances 
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RU and L1 Instances 
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RU and L1 Instances 
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RADIO SEGMENT (RU) 
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RU Procedures (monolithic eNB/gNB) 
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TX Precoding (monolithic eNB/gNB) 
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LAYER 1 HIGH SEGMENT 
(ENB/GNB) 
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Layer 1 TX per eNB instance 
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Layer 1 RX per eNB instance  
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RU/eNodeB OAI PUSCH Procedures 
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in RU 
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RU/eNodeB PRACH procedures 
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in RU 
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eNodeB PUCCH (1/1A/1B) Procedures 
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PHY/MAC INTERFACE 

(c) Eurecom 2017 

htpp://www.eurecom.fr/


OAI IF1’’ – MAC/PHY Interface 
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OAI IF1’’ – MAC/PHY 
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OAI IF1’’ – MAC/PHY 
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RU AND LAYER 1 PROCESS 
SCHEDULING 
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RU Process Scheduling 
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L1 Process Scheduling 
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Timing (“Almost” Single-Thread Mode) 
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Timing (Even/Odd Threading Mode) 
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Multi-threading lower-layer operations 

 Front-end Processing (RU) 
– Parallelizing even/odd slots in Fourier Transforms (TX and RX in 

RU) 

 Back-end Processing (L1) 
– Parallelizing Segments in Turbo-encoder / Rate-Matching 
– Parallelizing Segments in Rate-Matching Inversion / Turbo-

Decoder 

 Run worker threads in parallel to main thread in 
“single-thread” mode 

(c) Eurecom 2017 
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SIMD PROCESSING IN OAI 
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SIMD in OAI 

 All key time-critical routines are coded using fixed-
point processing and SIMD vector extensions in x86-
64 or ARM architecture 
– FFTs and basic routines use 16-bit AVX2 (downgraded to SSE4 

on AVX2-less targets) 
– Turbo encoder uses a combination of AVX2 and MMX 
– Turbo decoder uses 8-bit SSE4 (128-bit). Will be upgraded to 

AVX2. But this takes effort and time … 
– Viterbi decoder uses 8-bit SSE4 
– ARM Neon largely written  

 Soon upgraded to AVX512 on recent IA 

 New routines to come 
– LDPC encode/decode for NR 

(c) Eurecom 2017 
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Key linear processing operations which can be 
vectorized easily with SIMD 

 Inner-products (synchronization, projection 
operations) 

 Componentwise products 
(compensation/equalization, channel estimation) 

 FFT/IFFTs (OFDM TX/RX) 

 Peak search in vector (synchronization) 

 Vector addition, subtraction, energy, absolute 
value 
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Coding with SIMD 

 SIMD = Single Instruction Multiple Data 
– Operate on vectors of samples with parallel instructions 

 Good for linear processing in front-end and trellis-
processing (turbo/Viterbi decoding) 
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OAI Radix-4 DFT 

 Basic idea is to optimize 
– the 16-point DFT with SIMD 
– the 16-bit complex radix-4 and 

radix-2 butterflies 
– Build up 

64,128,256,512,1024,2048 
from there 

 Two butterfly stages 
(radix 4), one with 
twiddles 

 One permutation 
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OAI DFT with SSE4 

 register __m128i x1_flip,x3_flip,x02t,x13t; 
 register __m128i xtmp0,xtmp1,xtmp2,xtmp3; 
 
  // First stage : 4 Radix-4 butterflies without input twiddles 
  x02t    = _mm_adds_epi16(x128[0],x128[2]); 
  x13t    = _mm_adds_epi16(x128[1],x128[3]); 
  xtmp0   = _mm_adds_epi16(x02t,x13t); 
  xtmp2   = _mm_subs_epi16(x02t,x13t); 
 
  // multiplication of x1 and x3 by sqrt(-1) 
  x1_flip = _mm_sign_epi16(x128[1],*(__m128i*)conjugatedft); 
  x1_flip = _mm_shufflelo_epi16(x1_flip,_MM_SHUFFLE(2,3,0,1)); 
  x1_flip = _mm_shufflehi_epi16(x1_flip,_MM_SHUFFLE(2,3,0,1)); 
  x3_flip = _mm_sign_epi16(x128[3],*(__m128i*)conjugatedft); 
  x3_flip = _mm_shufflelo_epi16(x3_flip,_MM_SHUFFLE(2,3,0,1)); 
  x3_flip = _mm_shufflehi_epi16(x3_flip,_MM_SHUFFLE(2,3,0,1)); 
 
  x02t    = _mm_subs_epi16(x128[0],x128[2]); 
  x13t    = _mm_subs_epi16(x1_flip,x3_flip); 
  xtmp1   = _mm_adds_epi16(x02t,x13t);  // x0 + x1f - x2 - x3f 
  xtmp3   = _mm_subs_epi16(x02t,x13t);  // x0 - x1f - x2 + x3f 

= 
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Performance and Extensions 

 OAI Radix-4 DFTs provide essentially the same 
performance as FFTW 
– Approx 300 cycles for 64-point DFT on a x86-64 core i5/i7/Xeon 

machine (gcc generated) 
– For larger DFTs, both are slightly less than the closed IPP 

libraries from Intel (based on SPIRAL code generator) 
– OAI doesn’t make use of FFTW only because we use the DFT 

optimizations for teaching SIMD coding to our Engineering 
diploma students. 

 OAI also provides all the mixed-radix DFTs that are 
required for UE and eNB DSP 
– 2a3b5c for SC-FDMA (uplink transmission formats) 
– 2N3 for random-access preamble (PRACH TX at UE and RX at 

eNB) 
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Turbo Decoding 

 The primary (by far) bottleneck in an HSPA/LTE receiver 
is the turbo decoder 

 SIMD parallelization can be done in different ways 
– OAI adopts a scalable SIMD max-logmap approach whereby code 

blocks (8-bit LLRs) are split in 16 (SSE4) or 32 (AVX2) equal size 
sub-blocks 

– integer x86 SIMD arithmetic is used to efficiently perform the 
forward-backward BCJR recursions (16 or 32-way parallel add, 
subtract, max) and extrinsic information computation 

– Care must also be taken when it comes to the interleaving and data 
reforming operations in a turbo decoder.  These can also benefit 
from SIMD 

 x86-64 is much more efficient for Turbo decoding than 
legacy x86 because of the fact that the number of 
available registers is doubled 
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RTOS issues 

 Low-latency radio applications for PHY (e.g. 802.11x,LTE) 
should run under an RTOS 
– eCos/MutexH for generic GNU environment 
– RTAI for x86 
– VXWorks ($$$) 

 Example: RTAI / RT-PREEMPT kernel can achieve worst-
case latencies below 30µs on a loaded-PC.  More than 
good enough for LTE, but not 802.11x because of MAC 
timing. 

 

 Should make use of POSIX multithreading for SMP 
– Rich open-source tool chains for such environments (Linux, BSD, 

etc.) 
– Simple to simulate on GNU-based systems for validation in user-

space 
– Allow each radio instance to use multiple threads on common HW 
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Issues with standard Linux Kernels 

 Scheduler latency 
– Kernel is not pre-emptible 
– Overhead in disabling/enabling interrupts 

 Mainstream kernel solutions 
– Kernel preemption (RT-PREEMPT) – mainstream until 2.6.32 

(patches afterwards) 
– Latency reduction (soft-RT kernels) 
– Version >3.14 

 Patches / dual-OS solution 
– ADEOS + RTAI/Xenomai 
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RTAI/Xenomai 

 Real-time nano-kernel tightly integrated with Linux 
kernel 
– Linux runs as a low-priority thread under RTAI/Xenomai and and 

both share same memory space 
– Both RTAI and Xenomai make use of ADEOS which is a 

hardware abstraction framework which allows several OS to 
share HW resources 
Low-level Scheduler allows Linux kernel to run in 

background 
– Both RTAI and Xenomai provide user-space real-time 

functionality in addition to kernel-only applications 
Provide various API flavours to resemble classical OS (e.g. 

Posix, VXWorks, RTDM, etc.)  
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RT-PREEMPT and recent Linux Low-Latency 
Kernels 

 The RT-Preempt patch and out-of-the-box Linux kernel (>3.14) 
converts Linux into a fully preemptible kernel. The magic is done 
with:  

– Making in-kernel locking-primitives (using spinlocks) preemptible though 
reimplementation with rtmutexes.  

– Critical sections protected by i.e. spinlock_t and rwlock_t are now preemptible. 
The creation of non-preemptible sections (in kernel) is still possible with 
raw_spinlock_t (same APIs like spinlock_t).  

– Implementing priority inheritance for in-kernel spinlocks and semaphores. For 
more information on priority inversion and priority inheritance please consult 
Introduction to Priority Inversion.  

– Converting interrupt handlers into preemptible kernel threads: The RT-Preempt 
patch treats soft interrupt handlers in kernel thread context, which is represented 
by a task_struct like a common user space process. However it is also possible 
to register an IRQ in kernel context.  

– Converting the old Linux timer API into separate infrastructures for high 
resolution kernel timers plus one for timeouts, leading to user space POSIX 
timers with high resolution.  

 In our experience, these solutions provide slightly lower-
performance w.r.t. RTAI, but the other advantages greatly 
outweigh this penalty. 
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https://rt.wiki.kernel.org/index.php/Priority_inheritance
https://rt.wiki.kernel.org/index.php/Priority_inversion
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