
Overview of Day 1

 Some background on OpenAirInterface

 OAI RAN (openairinterface5g) Software Architecture
– Functional entities
Focus today on L1 procedures for eNodeB

– Real-time-scheduling
Example with USRP RF

 SIMD Processing and Optimizations used in OAI

(c) Eurecom 2017

htpp://www.eurecom.fr/

BACKGROUND ON OAI

(c) Eurecom 2017

htpp://www.eurecom.fr/

A bit about R. Knopp

 From Montreal, Canada

 B.Eng (Hons) (1992), M. Eng. McGill University
(1993), Dr. Sc. (1997) EPFL
– Work in Digital Communications, Wireless systems and

protocols, real-time prototyping methods

 Currently Professor @ EURECOM, Sophia Antipolis
Technopole, France (near the city of Nice)
– Research center in Communication Systems, Security and Data

Science
– 4-5th year Engineering curriculum(~120 students) + PhD (70

students)

(c) Eurecom 2017

htpp://www.eurecom.fr/

Commoditization of 3GPP Radio Systems and
Open-Source : OAI Software Alliance

 Today it is feasible to put a fully-compliant 4G eNodeB and
EPC in a commodity x86 or ARM-based computer (or data
center for a pool of eNodeBs)
– Emergence of “radio”-hackers in addition to commercial vendors
– OAI Alliance

launched in 2014 as a “Fonds de Dotation”
3GPP strategic members in 2015-2017 (Orange, TCL-Alcatel, Ercom,

Nokia)
Many associate members (Cisco, B-COM, INRIA, IMT, TNO, III,

Rutgers WINLAB, U. Washington, BUPT, IITH etc.)

 Coupling this with an open-source community makes for a very
disruptive technology for the onset of 5G
– What we’re building

Community of individual developers, academics and major industrials
embracing open-source for 5G

– What we hope to become
A strong voice and maybe a game-changer in the 3GPP world

 Real impact from “the little guys” on 3GPP systems

Evolution of Telecom and Open-Source

htpp://www.eurecom.fr/

OSA Components

 FRAND License allows committing software with patent rights into OSA and
still keep licensing rights -> Inline with 3GPP fair use licensing policy

 We aim to work closely with ETSI on implications of open-source for
licensing/certification

 Future 5G Core Network developed within eNB/UE repository will inherit
FRAND license

htpp://www.eurecom.fr/

Bringing open-source into the RAN

 Challenges for 4.5G/5G
– FRAND License for open-source

Allow 3GPP members to contribute to
open-source and still perceive
royalties

Compatible with
 academic/research/prototyping use
 commercial use in devices, data

centers and testing equipment
Approval by Nokia, Orange, TCL and

Ericsson (observer)
– Community coexistence/synergy with

standardization process
Use of open-source in prototyping

phase of 5G
Open-source community following

3GPP process
Community representation in 3GPP

via OSA

Evolution of Telecom and Open-Source

eNB eNB eNB

Mobile Edge
Cloud

EPC + ClearWater IMS,
FreePCRF (OpenStack + JuJu)

S1AP GTPu

Main CLOUD

S1AP GTPu S1AP GTPu

UE

htpp://www.eurecom.fr/

OAI Offering

 eNodeB software for x86/ARM
– 4G Implementation

Rel 10 (with many missing and incomplete features under development
by the community)

Some extensions to Rel-14
 LTE-M, NB-IoT under dev
 Sidelink eNodeB procedures under dev

– 5G Rel-15 underway in OAI community

 UE Software for x86/ARM
– 4G Implementation

Rel 10 (with many missing and incomplete features under development
by the community)

Some extensions to Rel-14
 Sidelink UE procedures under dev

 EPC Software
– Rel10 3GPP MME/HSS/S-PGW
– Rel14 extensions under development
– Transition to 5G core service-based architecture

(c) Eurecom 2017

htpp://www.eurecom.fr/

RAN ARCHITECTURE

(c) Eurecom 2017

htpp://www.eurecom.fr/

Current vRAN Roadmap in OAI

(c) Eurecom 2017

NFAPI

NFAPI

htpp://www.eurecom.fr/

Current Functional Entities

(c) Eurecom 2017

htpp://www.eurecom.fr/

NGFI fronthaul splits today in OAI

(c) Eurecom 2017

NR study item
R3-171162

htpp://www.eurecom.fr/

RRU/RAU

 OAI current
lower-layer
functional split
– a network of radio

units (L1-low)
– a precoding

function and
switching function

– Regular
(virtualized) eNB
functions

(c) Eurecom 2017

htpp://www.eurecom.fr/

(c) Eurecom 2017

OAI RAN (CU-DU) Architecture

htpp://www.eurecom.fr/

RU and L1 Instances

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU and L1 Instances

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU and L1 Instances

(c) Eurecom 2017

htpp://www.eurecom.fr/

RADIO SEGMENT (RU)

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU Procedures (monolithic eNB/gNB)

(c) Eurecom 2017

htpp://www.eurecom.fr/

(c) Eurecom 2017

htpp://www.eurecom.fr/

(c) Eurecom 2017

TX Precoding (monolithic eNB/gNB)

htpp://www.eurecom.fr/

LAYER 1 HIGH SEGMENT
(ENB/GNB)

(c) Eurecom 2017

htpp://www.eurecom.fr/

Layer 1 TX per eNB instance

(c) Eurecom 2017

htpp://www.eurecom.fr/

Layer 1 RX per eNB instance

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU/eNodeB OAI PUSCH Procedures

(c) Eurecom 2017

in RU

htpp://www.eurecom.fr/

RU/eNodeB PRACH procedures

(c) Eurecom 2017

in RU

htpp://www.eurecom.fr/

eNodeB PUCCH (1/1A/1B) Procedures

(c) Eurecom 2017

htpp://www.eurecom.fr/

PHY/MAC INTERFACE

(c) Eurecom 2017

htpp://www.eurecom.fr/

OAI IF1’’ – MAC/PHY Interface

(c) Eurecom 2017

htpp://www.eurecom.fr/

OAI IF1’’ – MAC/PHY

(c) Eurecom 2017

htpp://www.eurecom.fr/

OAI IF1’’ – MAC/PHY

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU AND LAYER 1 PROCESS
SCHEDULING

(c) Eurecom 2017

htpp://www.eurecom.fr/

RU Process Scheduling

(c) Eurecom 2017

htpp://www.eurecom.fr/

L1 Process Scheduling

(c) Eurecom 2017

htpp://www.eurecom.fr/

Timing (“Almost” Single-Thread Mode)

(c) Eurecom 2017

htpp://www.eurecom.fr/

Timing (Even/Odd Threading Mode)

(c) Eurecom 2017

htpp://www.eurecom.fr/

Multi-threading lower-layer operations

 Front-end Processing (RU)
– Parallelizing even/odd slots in Fourier Transforms (TX and RX in

RU)

 Back-end Processing (L1)
– Parallelizing Segments in Turbo-encoder / Rate-Matching
– Parallelizing Segments in Rate-Matching Inversion / Turbo-

Decoder

 Run worker threads in parallel to main thread in
“single-thread” mode

(c) Eurecom 2017

htpp://www.eurecom.fr/

SIMD PROCESSING IN OAI

(c) Eurecom 2017

htpp://www.eurecom.fr/

SIMD in OAI

 All key time-critical routines are coded using fixed-
point processing and SIMD vector extensions in x86-
64 or ARM architecture
– FFTs and basic routines use 16-bit AVX2 (downgraded to SSE4

on AVX2-less targets)
– Turbo encoder uses a combination of AVX2 and MMX
– Turbo decoder uses 8-bit SSE4 (128-bit). Will be upgraded to

AVX2. But this takes effort and time …
– Viterbi decoder uses 8-bit SSE4
– ARM Neon largely written

 Soon upgraded to AVX512 on recent IA

 New routines to come
– LDPC encode/decode for NR

(c) Eurecom 2017

htpp://www.eurecom.fr/

Key linear processing operations which can be
vectorized easily with SIMD

 Inner-products (synchronization, projection
operations)

 Componentwise products
(compensation/equalization, channel estimation)

 FFT/IFFTs (OFDM TX/RX)

 Peak search in vector (synchronization)

 Vector addition, subtraction, energy, absolute
value

htpp://www.eurecom.fr/

Coding with SIMD

 SIMD = Single Instruction Multiple Data
– Operate on vectors of samples with parallel instructions

 Good for linear processing in front-end and trellis-
processing (turbo/Viterbi decoding)

htpp://www.eurecom.fr/

OAI Radix-4 DFT

 Basic idea is to optimize
– the 16-point DFT with SIMD
– the 16-bit complex radix-4 and

radix-2 butterflies
– Build up

64,128,256,512,1024,2048
from there

 Two butterfly stages
(radix 4), one with
twiddles

 One permutation

htpp://www.eurecom.fr/

OAI DFT with SSE4

 register __m128i x1_flip,x3_flip,x02t,x13t;
 register __m128i xtmp0,xtmp1,xtmp2,xtmp3;

 // First stage : 4 Radix-4 butterflies without input twiddles
 x02t = _mm_adds_epi16(x128[0],x128[2]);
 x13t = _mm_adds_epi16(x128[1],x128[3]);
 xtmp0 = _mm_adds_epi16(x02t,x13t);
 xtmp2 = _mm_subs_epi16(x02t,x13t);

 // multiplication of x1 and x3 by sqrt(-1)
 x1_flip = _mm_sign_epi16(x128[1],*(__m128i*)conjugatedft);
 x1_flip = _mm_shufflelo_epi16(x1_flip,_MM_SHUFFLE(2,3,0,1));
 x1_flip = _mm_shufflehi_epi16(x1_flip,_MM_SHUFFLE(2,3,0,1));
 x3_flip = _mm_sign_epi16(x128[3],*(__m128i*)conjugatedft);
 x3_flip = _mm_shufflelo_epi16(x3_flip,_MM_SHUFFLE(2,3,0,1));
 x3_flip = _mm_shufflehi_epi16(x3_flip,_MM_SHUFFLE(2,3,0,1));

 x02t = _mm_subs_epi16(x128[0],x128[2]);
 x13t = _mm_subs_epi16(x1_flip,x3_flip);
 xtmp1 = _mm_adds_epi16(x02t,x13t); // x0 + x1f - x2 - x3f
 xtmp3 = _mm_subs_epi16(x02t,x13t); // x0 - x1f - x2 + x3f

=

htpp://www.eurecom.fr/

Performance and Extensions

 OAI Radix-4 DFTs provide essentially the same
performance as FFTW
– Approx 300 cycles for 64-point DFT on a x86-64 core i5/i7/Xeon

machine (gcc generated)
– For larger DFTs, both are slightly less than the closed IPP

libraries from Intel (based on SPIRAL code generator)
– OAI doesn’t make use of FFTW only because we use the DFT

optimizations for teaching SIMD coding to our Engineering
diploma students.

 OAI also provides all the mixed-radix DFTs that are
required for UE and eNB DSP
– 2a3b5c for SC-FDMA (uplink transmission formats)
– 2N3 for random-access preamble (PRACH TX at UE and RX at

eNB)

htpp://www.eurecom.fr/

Turbo Decoding

 The primary (by far) bottleneck in an HSPA/LTE receiver
is the turbo decoder

 SIMD parallelization can be done in different ways
– OAI adopts a scalable SIMD max-logmap approach whereby code

blocks (8-bit LLRs) are split in 16 (SSE4) or 32 (AVX2) equal size
sub-blocks

– integer x86 SIMD arithmetic is used to efficiently perform the
forward-backward BCJR recursions (16 or 32-way parallel add,
subtract, max) and extrinsic information computation

– Care must also be taken when it comes to the interleaving and data
reforming operations in a turbo decoder. These can also benefit
from SIMD

 x86-64 is much more efficient for Turbo decoding than
legacy x86 because of the fact that the number of
available registers is doubled

htpp://www.eurecom.fr/

RTOS issues

 Low-latency radio applications for PHY (e.g. 802.11x,LTE)
should run under an RTOS
– eCos/MutexH for generic GNU environment
– RTAI for x86
– VXWorks ($$$)

 Example: RTAI / RT-PREEMPT kernel can achieve worst-
case latencies below 30µs on a loaded-PC. More than
good enough for LTE, but not 802.11x because of MAC
timing.

 Should make use of POSIX multithreading for SMP
– Rich open-source tool chains for such environments (Linux, BSD,

etc.)
– Simple to simulate on GNU-based systems for validation in user-

space
– Allow each radio instance to use multiple threads on common HW

htpp://www.eurecom.fr/

Issues with standard Linux Kernels

 Scheduler latency
– Kernel is not pre-emptible
– Overhead in disabling/enabling interrupts

 Mainstream kernel solutions
– Kernel preemption (RT-PREEMPT) – mainstream until 2.6.32

(patches afterwards)
– Latency reduction (soft-RT kernels)
– Version >3.14

 Patches / dual-OS solution
– ADEOS + RTAI/Xenomai

htpp://www.eurecom.fr/

RTAI/Xenomai

 Real-time nano-kernel tightly integrated with Linux
kernel
– Linux runs as a low-priority thread under RTAI/Xenomai and and

both share same memory space
– Both RTAI and Xenomai make use of ADEOS which is a

hardware abstraction framework which allows several OS to
share HW resources
Low-level Scheduler allows Linux kernel to run in

background
– Both RTAI and Xenomai provide user-space real-time

functionality in addition to kernel-only applications
Provide various API flavours to resemble classical OS (e.g.

Posix, VXWorks, RTDM, etc.)

htpp://www.eurecom.fr/

RT-PREEMPT and recent Linux Low-Latency
Kernels

 The RT-Preempt patch and out-of-the-box Linux kernel (>3.14)
converts Linux into a fully preemptible kernel. The magic is done
with:

– Making in-kernel locking-primitives (using spinlocks) preemptible though
reimplementation with rtmutexes.

– Critical sections protected by i.e. spinlock_t and rwlock_t are now preemptible.
The creation of non-preemptible sections (in kernel) is still possible with
raw_spinlock_t (same APIs like spinlock_t).

– Implementing priority inheritance for in-kernel spinlocks and semaphores. For
more information on priority inversion and priority inheritance please consult
Introduction to Priority Inversion.

– Converting interrupt handlers into preemptible kernel threads: The RT-Preempt
patch treats soft interrupt handlers in kernel thread context, which is represented
by a task_struct like a common user space process. However it is also possible
to register an IRQ in kernel context.

– Converting the old Linux timer API into separate infrastructures for high
resolution kernel timers plus one for timeouts, leading to user space POSIX
timers with high resolution.

 In our experience, these solutions provide slightly lower-
performance w.r.t. RTAI, but the other advantages greatly
outweigh this penalty.

htpp://www.eurecom.fr/
http://en.wikipedia.org/wiki/Spinlock
https://rt.wiki.kernel.org/index.php/Priority_inheritance
https://rt.wiki.kernel.org/index.php/Priority_inversion

	Overview of Day 1
	Background on OAI
	A bit about R. Knopp
	Commoditization of 3GPP Radio Systems and Open-Source : OAI Software Alliance
	Slide Number 5
	Bringing open-source into the RAN
	OAI Offering
	RAN Architecture
	Current vRAN Roadmap in OAI
	Current Functional Entities
	NGFI fronthaul splits today in OAI
	RRU/RAU
	OAI RAN (CU-DU) Architecture
	RU and L1 Instances
	RU and L1 Instances
	RU and L1 Instances
	Radio Segment (RU)
	RU Procedures (monolithic eNB/gNB)
	Slide Number 19
	TX Precoding (monolithic eNB/gNB)
	Layer 1 High Segment (eNB/GNB)
	Layer 1 TX per eNB instance
	Layer 1 RX per eNB instance
	RU/eNodeB OAI PUSCH Procedures
	RU/eNodeB PRACH procedures
	eNodeB PUCCH (1/1A/1B) Procedures
	PHY/MAC Interface
	OAI IF1’’ – MAC/PHY Interface
	OAI IF1’’ – MAC/PHY
	OAI IF1’’ – MAC/PHY
	RU and Layer 1 PROCESS SCHEDULING
	RU Process Scheduling
	L1 Process Scheduling
	Timing (“Almost” Single-Thread Mode)
	Timing (Even/Odd Threading Mode)
	Multi-threading lower-layer operations
	SIMD Processing in OAI
	SIMD in OAI
	Key linear processing operations which can be vectorized easily with SIMD
	Coding with SIMD
	OAI Radix-4 DFT
	OAI DFT with SSE4
	Performance and Extensions
	Turbo Decoding
	RTOS issues
	Issues with standard Linux Kernels
	RTAI/Xenomai
	RT-PREEMPT and recent Linux Low-Latency Kernels

